University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Florey Department of Neuroscience and Mental Health
  • Florey Department of Neuroscience and Mental Health - Research Publications
  • View Item
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Florey Department of Neuroscience and Mental Health
  • Florey Department of Neuroscience and Mental Health - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Spinal Oxygen Sensors (SOS): A Novel Oxygen Sensing Mechanism Involved in Cardiovascular Responses to Hypoxia

    Thumbnail
    Citations
    Altmetric
    Author
    Barioni, N; Derakhshan, F; Lopes, L; Heidari, N; Bharadia, M; Roy, A; Baghdadwala, M; McDonald, F; Scheibli, E; Harris, M; ...
    Date
    2020-04-01
    Source Title
    The FASEB Journal
    Publisher
    WILEY
    University of Melbourne Author/s
    Dutschmann, Mathias
    Affiliation
    Florey Department of Neuroscience and Mental Health
    Metadata
    Show full item record
    Document Type
    Conference Paper
    Citations
    Barioni, N., Derakhshan, F., Lopes, L., Heidari, N., Bharadia, M., Roy, A., Baghdadwala, M., McDonald, F., Scheibli, E., Harris, M., Dutschmann, M., Onimaru, H., Okada, Y. & Wilson, R. (2020). Spinal Oxygen Sensors (SOS): A Novel Oxygen Sensing Mechanism Involved in Cardiovascular Responses to Hypoxia. FASEB JOURNAL, 34, (S1), WILEY. https://doi.org/10.1096/fasebj.2020.34.s1.03781.
    Access Status
    This item is currently not available from this repository
    URI
    http://hdl.handle.net/11343/254317
    DOI
    10.1096/fasebj.2020.34.s1.03781
    Abstract
    Objective: To study the cellular oxygen sensing mechanism and contribution of the SOS in responses to cardiorespiratory crisis. Methods: We investigated the cellular mechanism of oxygen sensing in artificially‐perfused (in situ) and slice (in vitro) thoracic spinal cord preparations, recording sympathetic nerve root and single cell responses to hypoxia during pharmacological interrogation. To determine if the SOS are involved in cardiorespiratory responses to asphyxia, we also used an in situ rat spinal cord – carotid body ‐ brainstem preparation in which each oxygen sensitive compartment is separately perfused while recording phrenic (respiratory) and splanchnic (sympathetic) nerve activity. Results: Our data suggest the SOS use a novel oxygen sensing mechanism. This mechanism involves two interacting NADPH and oxygen‐dependent enzymes: Neuronal Nitric Oxide Synthase (NOS1) and NADPH oxidase (NOX2). NOS1 is expressed in surprising abundance in the SOS and is oxygen sensitive across the entire physiological range. Hence, in the presence of oxygen, NOS1 is likely to utilize most of the available NADPH in the cell. When oxygenation falls during hypoxia, NOS1 activity is reduced, increasing NADPH availability for NOX2. NOX2 produces Reactive Oxygen Species (ROS) which in turn, activate ROS‐dependent internal Ca2+ stores and/or Ca2+ channels leading to increased intracellular Ca2+, neuronal firing and, consequently, SOS responses to hypoxia. Functionally, during hypoxia, the SOS enhance sympathetic and breathing activity, while shortening apnea and gasping towards recovery, and are capable of triggering brief periods of sympathetic and respiratory‐like activity in the brainstem’s absence. Conclusions: The results provide critical new knowledge required to unlock the cellular mechanisms involved in how the body mounts emergency responses to conditions that involve chronic and acute hypoxia.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [45770]
    • Florey Department of Neuroscience and Mental Health - Research Publications [1052]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors