University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Melbourne School of Population and Global Health
  • Melbourne School of Population and Global Health - Research Publications
  • View Item
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Melbourne School of Population and Global Health
  • Melbourne School of Population and Global Health - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifying and correcting epigenetics measurements for systematic sources of variation

    Thumbnail
    Download
    Published version (960.1Kb)

    Citations
    Scopus
    Web of Science
    Altmetric
    6
    6
    Author
    Perrier, F; Novoloaca, A; Ambatipudi, S; Baglietto, L; Ghantous, A; Perduca, V; Barrdahl, M; Harlid, S; Ong, KK; Cardona, A; ...
    Date
    2018-03-21
    Source Title
    Clinical Epigenetics
    Publisher
    BIOMED CENTRAL LTD
    University of Melbourne Author/s
    Baglietto, Laura
    Affiliation
    Melbourne School of Population and Global Health
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Perrier, F., Novoloaca, A., Ambatipudi, S., Baglietto, L., Ghantous, A., Perduca, V., Barrdahl, M., Harlid, S., Ong, K. K., Cardona, A., Polidoro, S., Nost, T. H., Overvad, K., Omichessan, H., Dolle, M., Bamia, C., Maria Huerta, J., Vineis, P., Herceg, Z. ,... Ferrari, P. (2018). Identifying and correcting epigenetics measurements for systematic sources of variation. CLINICAL EPIGENETICS, 10 (1), https://doi.org/10.1186/s13148-018-0471-6.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/254649
    DOI
    10.1186/s13148-018-0471-6
    Abstract
    Background: Methylation measures quantified by microarray techniques can be affected by systematic variation due to the technical processing of samples, which may compromise the accuracy of the measurement process and contribute to bias the estimate of the association under investigation. The quantification of the contribution of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features.In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate the performance of existing normalizing techniques to correct for unwanted variation. Illumina Infinium HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2) analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute residuals were applied. The impact of each correcting method on the association between smoking status and DNA methylation levels was evaluated, and results were compared with findings from a large meta-analysis. Results: A sizeable proportion of systematic variability due to variables expressing 'batch' and 'sample position' within 'chip' was identified, with values of the partial R2 statistics equal to 9.5 and 11.4% of total variation, respectively. After application of ComBat or the residuals' methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique resulted in a reduced variability due to 'batch' (1.3%) and 'sample position' (0.6%), and in a diminished variability attributable to 'chip' within a batch (0.9%). After ComBat or the residuals' corrections, a larger number of significant sites (k = 600 and k = 427, respectively) were associated to smoking status than the SVA correction (k = 96). Conclusions: The three correction methods removed systematic variation in DNA methylation data, as assessed by the PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative findings than ComBat in the association between smoking and DNA methylation.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [45770]
    • Melbourne School of Population and Global Health - Research Publications [4369]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors