Reptile Pregnancy Is Underpinned by Complex Changes in Uterine Gene Expression: A Comparative Analysis of the Uterine Transcriptome in Viviparous and Oviparous Lizards

Download
Author
Griffith, OW; Brandley, MC; Belov, K; Thompson, MBDate
2016-10-01Source Title
Genome Biology and EvolutionPublisher
OXFORD UNIV PRESSUniversity of Melbourne Author/s
Griffith, OliverAffiliation
School of BioSciencesMetadata
Show full item recordDocument Type
Journal ArticleCitations
Griffith, O. W., Brandley, M. C., Belov, K. & Thompson, M. B. (2016). Reptile Pregnancy Is Underpinned by Complex Changes in Uterine Gene Expression: A Comparative Analysis of the Uterine Transcriptome in Viviparous and Oviparous Lizards. GENOME BIOLOGY AND EVOLUTION, 8 (10), pp.3226-3239. https://doi.org/10.1093/gbe/evw229.Access Status
Open AccessAbstract
The evolution of new organs is difficult to study because most vertebrate organs evolved only once, more than 500 million years ago. An ideal model for understanding complex organ evolution is the placenta, a structure that is present in live bearing reptiles and mammals (amniotes), which has evolved independently more than 115 times. Using transcriptomics, we characterized the uterine gene expression patterns through the reproductive cycle of a viviparous skink lizard, Pseudemoia entrecasteauxii Then we compare these patterns with the patterns of gene expression from two oviparous skinks Lampropholis guichenoti and Lerista bougainvillii While thousands of genes are differentially expressed between pregnant and non-pregnant uterine tissue in the viviparous skink, few differentially expressed genes were identified between gravid and non-gravid oviparous skinks. This finding suggests that in P. entrecasteauxii, a pregnant-specific gene expression profile has evolved, allowing for the evolution of pregnancy-specific innovations in the uterus. We find substantial gene expression differences between the uterus of the chorioallantoic and the yolk sac placenta in P. entrecasteauxii, suggesting these placental regions are specialized for different placental functions. In particular, the chorioallantoic placenta is likely a major site of nutrient transport by membrane-bound transport proteins, while the yolk sac placenta also likely transports nutrients but via apocrine secretions. We discuss how the evolution of transcription factor networks is likely to underpin the evolution of the new transcriptional states in the uterine tissue of viviparous reptiles.
Export Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References