Show simple item record

dc.contributor.authorFlaxman, AD
dc.contributor.authorJoseph, JC
dc.contributor.authorMurray, CJL
dc.contributor.authorRiley, ID
dc.contributor.authorLopez, AD
dc.date.accessioned2020-12-17T03:20:44Z
dc.date.available2020-12-17T03:20:44Z
dc.date.issued2018-04-19
dc.identifierpii: 10.1186/s12916-018-1039-1
dc.identifier.citationFlaxman, A. D., Joseph, J. C., Murray, C. J. L., Riley, I. D. & Lopez, A. D. (2018). Performance of InSilicoVA for assigning causes of death to verbal autopsies: multisite validation study using clinical diagnostic gold standards. BMC MEDICINE, 16 (1), https://doi.org/10.1186/s12916-018-1039-1.
dc.identifier.issn1741-7015
dc.identifier.urihttp://hdl.handle.net/11343/254845
dc.description.abstractBACKGROUND: Recently, a new algorithm for automatic computer certification of verbal autopsy data named InSilicoVA was published. The authors presented their algorithm as a statistical method and assessed its performance using a single set of model predictors and one age group. METHODS: We perform a standard procedure for analyzing the predictive accuracy of verbal autopsy classification methods using the same data and the publicly available implementation of the algorithm released by the authors. We extend the original analysis to include children and neonates, instead of only adults, and test accuracy using different sets of predictors, including the set used in the original paper and a set that matches the released software. RESULTS: The population-level performance (i.e., predictive accuracy) of the algorithm varied from 2.1 to 37.6% when trained on data preprocessed similarly as in the original study. When trained on data that matched the software default format, the performance ranged from -11.5 to 17.5%. When using the default training data provided, the performance ranged from -59.4 to -38.5%. Overall, the InSilicoVA predictive accuracy was found to be 11.6-8.2 percentage points lower than that of an alternative algorithm. Additionally, the sensitivity for InSilicoVA was consistently lower than that for an alternative diagnostic algorithm (Tariff 2.0), although the specificity was comparable. CONCLUSIONS: The default format and training data provided by the software lead to results that are at best suboptimal, with poor cause-of-death predictive performance. This method is likely to generate erroneous cause of death predictions and, even if properly configured, is not as accurate as alternative automated diagnostic methods.
dc.languageEnglish
dc.publisherBMC
dc.titlePerformance of InSilicoVA for assigning causes of death to verbal autopsies: multisite validation study using clinical diagnostic gold standards
dc.typeJournal Article
dc.identifier.doi10.1186/s12916-018-1039-1
melbourne.affiliation.departmentMelbourne School of Population and Global Health
melbourne.source.titleBMC Medicine
melbourne.source.volume16
melbourne.source.issue1
dc.rights.licenseCC BY
melbourne.elementsid1324414
melbourne.contributor.authorLopez, Alan
melbourne.contributor.authorRiley, Ian
dc.identifier.eissn1741-7015
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record