Show simple item record

dc.contributor.authorWay, GP
dc.contributor.authorSanchez-Vega, F
dc.contributor.authorLa, K
dc.contributor.authorArmenia, J
dc.contributor.authorChatila, WK
dc.contributor.authorLuna, A
dc.contributor.authorSander, C
dc.contributor.authorCherniack, AD
dc.contributor.authorMina, M
dc.contributor.authorCiriello, G
dc.contributor.authorSchultz, N
dc.contributor.authorSanchez, Y
dc.contributor.authorGreene, CS
dc.date.accessioned2020-12-17T03:23:09Z
dc.date.available2020-12-17T03:23:09Z
dc.date.issued2018-04-03
dc.identifierpii: S2211-1247(18)30389-9
dc.identifier.citationWay, G. P., Sanchez-Vega, F., La, K., Armenia, J., Chatila, W. K., Luna, A., Sander, C., Cherniack, A. D., Mina, M., Ciriello, G., Schultz, N., Sanchez, Y. & Greene, C. S. (2018). Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. CELL REPORTS, 23 (1), pp.172-+. https://doi.org/10.1016/j.celrep.2018.03.046.
dc.identifier.issn2211-1247
dc.identifier.urihttp://hdl.handle.net/11343/254863
dc.description.abstractPrecision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders" may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders.
dc.languageEnglish
dc.publisherCELL PRESS
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.titleMachine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas
dc.typeJournal Article
dc.identifier.doi10.1016/j.celrep.2018.03.046
melbourne.affiliation.departmentSir Peter MacCallum Department of Oncology
melbourne.affiliation.departmentSurgery (RMH)
melbourne.affiliation.facultyMedicine, Dentistry & Health Sciences
melbourne.source.titleCell Reports
melbourne.source.volume23
melbourne.source.issue1
melbourne.source.pages172-+
dc.rights.licenseCC BY
melbourne.elementsid1323382
dc.identifier.eissn2211-1247
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record