Shear Bond Strength and Remineralisation Effect of a Casein Phosphopeptide-Amorphous Calcium Phosphate-Modified Glass Ionomer Cement on Artificial "Caries-Affected" Dentine

Download
Author
Zhao, IS; Mei, ML; Zhou, ZL; Burrow, MF; Lo, EC-M; Chu, C-HDate
2017-08-01Source Title
International Journal of Molecular SciencesPublisher
MDPIUniversity of Melbourne Author/s
Burrow, MichaelAffiliation
Melbourne Dental SchoolMetadata
Show full item recordDocument Type
Journal ArticleCitations
Zhao, I. S., Mei, M. L., Zhou, Z. L., Burrow, M. F., Lo, E. C. -M. & Chu, C. -H. (2017). Shear Bond Strength and Remineralisation Effect of a Casein Phosphopeptide-Amorphous Calcium Phosphate-Modified Glass Ionomer Cement on Artificial "Caries-Affected" Dentine. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 18 (8), https://doi.org/10.3390/ijms18081723.Access Status
Open AccessAbstract
This study investigated the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified glass ionomer cement (GIC) on shear bond strength (SBS) and remineralisation of artificial "caries-affected" dentine. Human dentine slices were demineralised and allocated to three groups: group 1, conventional GIC; group 2, CPP-ACP-modified GIC; and group 3, resin-modified GIC. The SBS was measured using a universal testing machine (n = 16 per group). Remaining samples (n = 8 per group) were subjected to pH-cycling for 28 days. After pH-cycling, lesion depth and micro-mechanical properties at the sample-bonding interface were investigated using micro-computed tomography (micro-CT) and nano-indentation, respectively. The SBS for groups 1 to 3 were 4.6 ± 1.5 MPa, 4.2 ± 1.1 MPa, and 5.9 ± 1.9 MPa, respectively (p = 0.007; group 1, group 2 < group 3). Lesion depths determined by micro-CT for groups 1 to 3 were 186 ± 8 µm, 149 ± 14 µm, and 178 ± 8 µm, respectively (p < 0.001; group 2 < group 1, group 3). The mean (±SD, standard deviation) nano-hardness values for groups 1 to 3 were 0.85 ± 0.22 GPa, 1.14 ± 0.21 GPa, and 0.81 ± 0.09 GPa, respectively (p = 0.003; group 1, group 3 < group 2). The mean (±SD) elastic moduli for groups 1 to 3 were 1.70 ± 0.33 GPa, 2.35 ± 0.44 GPa, and 1.59 ± 0.13 GPa, respectively (p < 0.001; group 1, group 3 < group 2). The results suggest that the incorporation of CPP-ACP into GIC does not adversely affect the adhesion to artificial caries-affected dentine. Furthermore, CPP-ACP-modified GIC is superior to conventional GIC in promoting dentine remineralisation.
Export Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References