University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Science
  • School of Mathematics and Statistics
  • School of Mathematics and Statistics - Research Publications
  • View Item
  • Minerva Access
  • Science
  • School of Mathematics and Statistics
  • School of Mathematics and Statistics - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics

    Thumbnail
    Download
    Published version (1.630Mb)

    Citations
    Scopus
    Web of Science
    Altmetric
    362
    346
    Author
    Giambartolomei, C; Vukcevic, D; Schadt, EE; Franke, L; Hingorani, AD; Wallace, C; Plagnol, V
    Date
    2014-05-01
    Source Title
    PLoS Genetics
    Publisher
    PUBLIC LIBRARY SCIENCE
    University of Melbourne Author/s
    Vukcevic, Damjan
    Affiliation
    School of Mathematics and Statistics
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Giambartolomei, C., Vukcevic, D., Schadt, E. E., Franke, L., Hingorani, A. D., Wallace, C. & Plagnol, V. (2014). Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLOS GENETICS, 10 (5), https://doi.org/10.1371/journal.pgen.1004383.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/255514
    DOI
    10.1371/journal.pgen.1004383
    Abstract
    Genetic association studies, in particular the genome-wide association study (GWAS) design, have provided a wealth of novel insights into the aetiology of a wide range of human diseases and traits, in particular cardiovascular diseases and lipid biomarkers. The next challenge consists of understanding the molecular basis of these associations. The integration of multiple association datasets, including gene expression datasets, can contribute to this goal. We have developed a novel statistical methodology to assess whether two association signals are consistent with a shared causal variant. An application is the integration of disease scans with expression quantitative trait locus (eQTL) studies, but any pair of GWAS datasets can be integrated in this framework. We demonstrate the value of the approach by re-analysing a gene expression dataset in 966 liver samples with a published meta-analysis of lipid traits including >100,000 individuals of European ancestry. Combining all lipid biomarkers, our re-analysis supported 26 out of 38 reported colocalisation results with eQTLs and identified 14 new colocalisation results, hence highlighting the value of a formal statistical test. In three cases of reported eQTL-lipid pairs (SYPL2, IFT172, TBKBP1) for which our analysis suggests that the eQTL pattern is not consistent with the lipid association, we identify alternative colocalisation results with SORT1, GCKR, and KPNB1, indicating that these genes are more likely to be causal in these genomic intervals. A key feature of the method is the ability to derive the output statistics from single SNP summary statistics, hence making it possible to perform systematic meta-analysis type comparisons across multiple GWAS datasets (implemented online at http://coloc.cs.ucl.ac.uk/coloc/). Our methodology provides information about candidate causal genes in associated intervals and has direct implications for the understanding of complex diseases as well as the design of drugs to target disease pathways.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [53102]
    • School of Mathematics and Statistics - Research Publications [842]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors