Tailoring the thermal and electrical transport properties of graphene films by grain size engineering

Download
Author
Ma, T; Liu, Z; Wen, J; Gao, Y; Ren, X; Chen, H; Jin, C; Ma, X-L; Xu, N; Cheng, H-M; ...Date
2017-02-16Source Title
Nature CommunicationsPublisher
NATURE PUBLISHING GROUPUniversity of Melbourne Author/s
Gao, YangAffiliation
Electrical and Electronic EngineeringMetadata
Show full item recordDocument Type
Journal ArticleCitations
Ma, T., Liu, Z., Wen, J., Gao, Y., Ren, X., Chen, H., Jin, C., Ma, X. -L., Xu, N., Cheng, H. -M. & Ren, W. (2017). Tailoring the thermal and electrical transport properties of graphene films by grain size engineering. NATURE COMMUNICATIONS, 8 (1), https://doi.org/10.1038/ncomms14486.Access Status
Open AccessAbstract
Understanding the influence of grain boundaries (GBs) on the electrical and thermal transport properties of graphene films is essentially important for electronic, optoelectronic and thermoelectric applications. Here we report a segregation-adsorption chemical vapour deposition method to grow well-stitched high-quality monolayer graphene films with a tunable uniform grain size from ∼200 nm to ∼1 μm, by using a Pt substrate with medium carbon solubility, which enables the determination of the scaling laws of thermal and electrical conductivities as a function of grain size. We found that the thermal conductivity of graphene films dramatically decreases with decreasing grain size by a small thermal boundary conductance of ∼3.8 × 109 W m-2 K-1, while the electrical conductivity slowly decreases with an extraordinarily small GB transport gap of ∼0.01 eV and resistivity of ∼0.3 kΩ μm. Moreover, the changes in both the thermal and electrical conductivities with grain size change are greater than those of typical semiconducting thermoelectric materials.
Export Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References