University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Science
  • School of BioSciences
  • School of BioSciences - Research Publications
  • View Item
  • Minerva Access
  • Science
  • School of BioSciences
  • School of BioSciences - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.)

    Thumbnail
    Download
    Published version (8.458Mb)

    Citations
    Scopus
    Web of Science
    Altmetric
    15
    13
    Author
    Beasley, JT; Bonneau, JP; Johnson, AAT
    Date
    2017-05-05
    Source Title
    PLoS One
    Publisher
    PUBLIC LIBRARY SCIENCE
    University of Melbourne Author/s
    Bonneau, Julien; Beasley, Jesse; Johnson, Alexander; Beasley, Jesse
    Affiliation
    School of BioSciences
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Beasley, J. T., Bonneau, J. P. & Johnson, A. A. T. (2017). Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.). PLOS ONE, 12 (5), https://doi.org/10.1371/journal.pone.0177061.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/256074
    DOI
    10.1371/journal.pone.0177061
    Abstract
    Iron (Fe) uptake in graminaceous plant species occurs via the release and uptake of Fe-chelating compounds known as mugineic acid family phytosiderophores (MAs). In the MAs biosynthetic pathway, nicotianamine aminotransferase (NAAT) and deoxymugineic acid synthase (DMAS) enzymes catalyse the formation of 2'-deoxymugineic acid (DMA) from nicotianamine (NA). Here we describe the identification and characterisation of six TaNAAT and three TaDMAS1 genes in bread wheat (Triticum aestivum L.). The coding sequences of all six TaNAAT homeologs consist of seven exons with ≥88.0% nucleotide sequence identity and most sequence variation present in the first exon. The coding sequences of the three TaDMAS1 homeologs consist of three exons with ≥97.8% nucleotide sequence identity. Phylogenetic analysis revealed that the TaNAAT and TaDMAS1 proteins are most closely related to the HvNAAT and HvDMAS1 proteins of barley and that there are two distinct groups of TaNAAT proteins-TaNAAT1 and TaNAAT2 -that correspond to the HvNAATA and HvNAATB proteins, respectively. Quantitative reverse transcription-PCR analysis revealed that the TaNAAT2 genes are expressed at highest levels in anther tissues whilst the TaNAAT1 and TaDMAS1 genes are expressed at highest levels in root tissues of bread wheat. Furthermore, the TaNAAT1, TaNAAT2 and TaDMAS1 genes were differentially regulated by plant Fe status and their expression was significantly upregulated in root tissues from day five onwards during a seven-day Fe deficiency treatment. The identification and characterization of the TaNAAT1, TaNAAT2 and TaDMAS1 genes provides a valuable genetic resource for improving bread wheat growth on Fe deficient soils and enhancing grain Fe nutrition.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [53102]
    • School of BioSciences - Research Publications [1508]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors