How much information can be obtained from tracking the position of the leading edge in a scratch assay?

Download
Author
Johnston, ST; Simpson, MJ; McElwain, DLSDate
2014-08-06Source Title
Journal of the Royal Society InterfacePublisher
The Royal SocietyUniversity of Melbourne Author/s
Johnston, StuartAffiliation
School of Mathematics and StatisticsMetadata
Show full item recordDocument Type
Journal ArticleCitations
Johnston, S. T., Simpson, M. J. & McElwain, D. L. S. (2014). How much information can be obtained from tracking the position of the leading edge in a scratch assay?. J R Soc Interface, 11 (97), pp.20140325-. https://doi.org/10.1098/rsif.2014.0325.Access Status
Open AccessOpen Access at PMC
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208362Abstract
Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity D, and the cell proliferation rate λ. Scratch assays are a commonly reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched, and the motion of the front is monitored over a short period of time, often less than 24 h. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Use of leading edge data is very convenient because, unlike other methods, it is non-destructive and does not require labelling, tracking or counting individual cells among the population. In this work, we study short-time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allow us to reliably identify D and λ. Using a naive calibration approach where we simply scan the relevant region of the (D, λ) parameter space, we show that there are many choices of D and λ for which our model produces indistinguishable short-time leading edge data. Therefore, without due care, it is impossible to estimate D and λ from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information, we divide the duration of the experiment into two periods, and we estimate D using data from the first period, whereas we estimate λ using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of D and λ that are consistent with previously reported values except that that our approach is fast, inexpensive, non-destructive and avoids the need for cell labelling and cell counting.
Export Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References