University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Engineering
  • Computing and Information Systems
  • Computing and Information Systems - Theses
  • View Item
  • Minerva Access
  • Engineering
  • Computing and Information Systems
  • Computing and Information Systems - Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automatic caloric expenditure estimation with smartphone's built-in sensors

    Thumbnail
    Download
    Automatic caloric expenditure estimation with smartphone's built-in sensors (8.018Mb)

    Citations
    Altmetric
    Author
    Cabello Wilson, Nestor Stiven
    Date
    2016
    Affiliation
    Computing and Information Systems
    Metadata
    Show full item record
    Document Type
    Masters Coursework thesis
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/256330
    Description

    © 2016 Nestor Stiven Cabello Wilson

    Abstract
    Fitness-tracking systems are technologies commonly used to enhance peoples' lifestyles. Feedback, usability, and ease of acquisition are fundamental to achieving the good physical condition goal. Users need constant motivation as a way to keep their interest in the fitness system and consequently, continue on a healthy lifestyle track. However, although feedback is increasingly being incorporated in many fitness-tracking systems, usability and ease of acquisition are remaining shortcomings that need to be enhanced. Features such as automatic activity identification, low-energy consumption, simplicity and goals-achieved notifications provide a good user experience. Nevertheless, most of these functions require the acquisition of a relatively expensive fitness-tracking device. Smartphones provide a partial solution by allowing users an easy access to multiple fitness applications, which reduce the need for purchasing another gadget. Nonetheless, improvements in the user experience are still necessary. In the other hand, wearables devices satisfy the usability, however, the cost of their acquisition represents an impediment to some users. The system proposed in this research aims to handle these issues and offers a solution by combining the benefits from mobile applications such as feedback and ease of acquisition, with the usability that wearable devices provide, into a smartphone Android application. Data collected from a single user while performing a series of common daily activities namely walking, jogging, cycling, climbing stairs, and walking downstairs, was used to classify and provide an automatic identification of these activities with an overall accuracy of 91%, and identifying the stairs activities with an accuracy of 81%. Finally, the caloric expenditure, which we considered the most important metric for motivating a user to perform a physical activity, was estimated by following the oxygen consumption equations from the American College of Sports Medicine (ACSM).
    Keywords
    human activity recognition, time series classification

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Computing and Information Systems - Theses [398]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors