University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Science
  • School of Mathematics and Statistics
  • School of Mathematics and Statistics - Research Publications
  • View Item
  • Minerva Access
  • Science
  • School of Mathematics and Statistics
  • School of Mathematics and Statistics - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOM™ assay data using the Fisher-Kolmogorov model.

    Thumbnail
    Download
    published version (4.710Mb)

    Citations
    Scopus
    Web of Science
    Altmetric
    53
    49
    Author
    Johnston, ST; Shah, ET; Chopin, LK; Sean McElwain, DL; Simpson, MJ
    Date
    2015-07-19
    Source Title
    BMC Systems Biology
    Publisher
    Springer Science and Business Media LLC
    University of Melbourne Author/s
    Johnston, Stuart
    Affiliation
    School of Mathematics and Statistics
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Johnston, S. T., Shah, E. T., Chopin, L. K., Sean McElwain, D. L. & Simpson, M. J. (2015). Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOM™ assay data using the Fisher-Kolmogorov model.. BMC Syst Biol, 9 (1), pp.38-. https://doi.org/10.1186/s12918-015-0182-y.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/256500
    DOI
    10.1186/s12918-015-0182-y
    Open Access at PMC
    http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506581
    Abstract
    BACKGROUND: Standard methods for quantifying IncuCyte ZOOM(™) assays involve measurements that quantify how rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area. We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To achieve this we calibrate standard data available from IncuCyte ZOOM(™) images to the solution of the Fisher-Kolmogorov model. RESULTS: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with proliferation rate, λ, and carrying capacity density, K. By analysing temporal changes in cell density in several subregions located well-behind the initial position of the leading edge we estimate λ and K. Given these estimates, we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM(™) assay and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM(™) assays using PC-3 prostate cancer cells and obtain estimates of D, λ and K. Comparing estimates of D, λ and K for a control assay with estimates of D, λ and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively unaffected by EGF. CONCLUSIONS: Our approach for estimating D, λ and K from an IncuCyte ZOOM(™) assay provides more detail about cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the addition of growth factors affects these processes individually.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [45770]
    • School of Mathematics and Statistics - Research Publications [680]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors