Show simple item record

dc.contributor.authorLiu, J
dc.contributor.authorAshton, MP
dc.contributor.authorSumer, H
dc.contributor.authorO'Bryan, MK
dc.contributor.authorBrodnicki, TC
dc.contributor.authorVerma, PJ
dc.date.accessioned2020-12-21T02:37:59Z
dc.date.available2020-12-21T02:37:59Z
dc.date.issued2011-05-01
dc.identifierpii: db10-1540
dc.identifier.citationLiu, J., Ashton, M. P., Sumer, H., O'Bryan, M. K., Brodnicki, T. C. & Verma, P. J. (2011). Generation of Stable Pluripotent Stem Cells From NOD Mouse Tail-Tip Fibroblasts. DIABETES, 60 (5), pp.1393-1398. https://doi.org/10.2337/db10-1540.
dc.identifier.issn0012-1797
dc.identifier.urihttp://hdl.handle.net/11343/257005
dc.description.abstractOBJECTIVE: The NOD mouse strain has been widely used to investigate the pathology and genetic susceptibility for type 1 diabetes. Induced pluripotent stem cells (iPSCs) derived from this unique mouse strain would enable new strategies for investigating type 1 diabetes pathogenesis and potential therapeutic targets. The objective of this study was to determine whether somatic fibroblasts from NOD mice could be reprogrammed to become iPSCs, providing an alternative source of stem cells for the production of genetically modified NOD cells and mice. RESEARCH DESIGN AND METHODS: Adult tail-tip fibroblasts from male NOD mice were reprogrammed by retroviral transduction of the coding sequences of three transcription factors, OCT4, SOX2, and KLF4, in combination with a histone deacetylase inhibitor, valproic acid. RESULTS: Eighteen NOD iPSC lines were generated, and three of these cell lines were further characterized. All three cell lines exhibited silencing of the three reprogramming transgenes and reactivation of endogenous pluripotent markers (OCT4, SOX2, NANOG, REX1, and SSEA1). These NOD iPSCs readily differentiated in vitro to form embryoid bodies and in vivo by teratoma formation in immunodeficient mice. Moreover, NOD iPSCs were successfully transfected with a reporter transgene and were capable of contributing to the inner cell mass of C57BL/6 blastocysts, leading to the generation of a chimeric mouse. CONCLUSIONS: Adult tail-tip fibroblasts from NOD mice can be reprogrammed, without constitutive ectopic expression of transcription factors, to produce iPSCs that exhibit classic mouse embryonic stem cell (ESC) features. These NOD iPSCs can be maintained and propagated under normal ESC culture conditions to produce genetically altered cell lines, differentiated cells, and chimeric mice.
dc.languageEnglish
dc.publisherAMER DIABETES ASSOC
dc.titleGeneration of Stable Pluripotent Stem Cells From NOD Mouse Tail-Tip Fibroblasts
dc.typeJournal Article
dc.identifier.doi10.2337/db10-1540
melbourne.affiliation.departmentMedicine and Radiology
melbourne.source.titleDiabetes
melbourne.source.volume60
melbourne.source.issue5
melbourne.source.pages1393-1398
dc.rights.licenseCC BY-NC-ND
melbourne.elementsid1234837
melbourne.contributor.authorBrodnicki, Thomas
dc.identifier.eissn1939-327X
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record