University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Melbourne Medical School
  • Anatomy and Neuroscience
  • Anatomy and Neuroscience - Research Publications
  • View Item
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Melbourne Medical School
  • Anatomy and Neuroscience
  • Anatomy and Neuroscience - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identification of Phox2b-regulated genes by expression profiling of cranial motoneuron precursors

    Thumbnail
    Download
    published version (7.467Mb)

    Citations
    Scopus
    Web of Science
    Altmetric
    9
    9
    Author
    Pla, P; Hirsch, M-R; Le Crom, S; Reiprich, S; Harley, VR; Goridis, C
    Date
    2008-06-19
    Source Title
    Neural Development
    Publisher
    BMC
    University of Melbourne Author/s
    Harley, Vincent
    Affiliation
    Anatomy and Neuroscience
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Pla, P., Hirsch, M. -R., Le Crom, S., Reiprich, S., Harley, V. R. & Goridis, C. (2008). Identification of Phox2b-regulated genes by expression profiling of cranial motoneuron precursors. NEURAL DEVELOPMENT, 3 (1), https://doi.org/10.1186/1749-8104-3-14.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/257243
    DOI
    10.1186/1749-8104-3-14
    Abstract
    BACKGROUND: Branchiomotor neurons comprise an important class of cranial motor neurons that innervate the branchial-arch-derived muscles of the face, jaw and neck. They arise in the ventralmost progenitor domain of the rhombencephalon characterized by expression of the homeodomain transcription factors Nkx2.2 and Phox2b. Phox2b in particular plays a key role in the specification of branchiomotor neurons. In its absence, generic neuronal differentiation is defective in the progenitor domain and no branchiomotor neurons are produced. Conversely, ectopic expression of Phox2b in spinal regions of the neural tube promotes cell cycle exit and neuronal differentiation and, at the same time, induces genes and an axonal phenotype characteristic for branchiomotor neurons. How Phox2b exerts its pleiotropic functions, both as a proneural gene and a neuronal subtype determinant, has remained unknown. RESULTS: To gain further insights into the genetic program downstream of Phox2b, we searched for novel Phox2b-regulated genes by cDNA microarray analysis of facial branchiomotor neuron precursors from heterozygous and homozygous Phox2b mutant embryos. We selected for functional studies the genes encoding the axonal growth promoter Gap43, the Wnt antagonist Sfrp1 and the transcriptional regulator Sox13, which were not previously suspected to play roles downstream of Phox2b and whose expression was affected by Phox2b misexpression in the spinal cord. While Gap43 did not produce an obvious phenotype when overexpressed in the neural tube, Sfrp1 induced the interneuron marker Lhx1,5 and Sox13 inhibited neuronal differentiation. We then tested whether Sfrp1 and Sox13, which are down-regulated by Phox2b in the facial neuron precursors, would antagonize some aspects of Phox2b activity. Co-expression of Sfrp1 prevented Phox2b from repressing Lhx1,5 and alleviated the commissural axonal phenotype. When expressed together with Sox13, Phox2b was still able to promote cell cycle exit and neuronal differentiation, but the cells failed to relocate to the mantle layer and to extinguish the neural stem cell marker Sox2. CONCLUSION: Our results suggest novel roles for Sfrp1 and Sox13 in neuronal subtype specification and generic neuronal differentiation, respectively, and indicate that down-regulation of Sfrp1 and Sox13 are essential aspects of the genetic program controlled by Phox2b in cranial motoneurons.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [45689]
    • Anatomy and Neuroscience - Research Publications [621]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors