Show simple item record

dc.contributor.authorRajagopal, V
dc.contributor.authorHolmes, WR
dc.contributor.authorLee, PVS
dc.date.accessioned2020-12-21T04:21:22Z
dc.date.available2020-12-21T04:21:22Z
dc.date.issued2018-03-01
dc.identifier.citationRajagopal, V., Holmes, W. R. & Lee, P. V. S. (2018). Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 10 (2), https://doi.org/10.1002/wsbm.1407.
dc.identifier.issn1939-5094
dc.identifier.urihttp://hdl.handle.net/11343/257588
dc.description.abstractCellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.
dc.languageEnglish
dc.publisherWILEY
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0
dc.titleComputational modeling of single-cell mechanics and cytoskeletal mechanobiology
dc.typeJournal Article
dc.identifier.doi10.1002/wsbm.1407
melbourne.affiliation.departmentBiomedical Engineering
melbourne.source.titleWiley Interdisciplinary Reviews: Systems Biology and Medicine
melbourne.source.volume10
melbourne.source.issue2
dc.rights.licenseCC BY-NC
melbourne.elementsid1280287
melbourne.contributor.authorRajagopal, Vijayaraghavan
melbourne.contributor.authorLee, Vee Sin
dc.identifier.eissn1939-005X
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record