Multimorbidity and health-related quality of life (HRQoL) in a nationally representative population sample: implications of count versus cluster method for defining multimorbidity on HRQoL.

Download
Author
Wang, L; Palmer, AJ; Cocker, F; Sanderson, KDate
2017-01-09Source Title
Health and Quality of Life OutcomesPublisher
Springer Science and Business Media LLCUniversity of Melbourne Author/s
Palmer, AndrewAffiliation
Melbourne School of Population and Global HealthMetadata
Show full item recordDocument Type
Journal ArticleCitations
Wang, L., Palmer, A. J., Cocker, F. & Sanderson, K. (2017). Multimorbidity and health-related quality of life (HRQoL) in a nationally representative population sample: implications of count versus cluster method for defining multimorbidity on HRQoL.. Health Qual Life Outcomes, 15 (1), pp.7-. https://doi.org/10.1186/s12955-016-0580-x.Access Status
Open AccessOpen Access at PMC
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5223532Abstract
BACKGROUND: No universally accepted definition of multimorbidity (MM) exists, and implications of different definitions have not been explored. This study examined the performance of the count and cluster definitions of multimorbidity on the sociodemographic profile and health-related quality of life (HRQoL) in a general population. METHODS: Data were derived from the nationally representative 2007 Australian National Survey of Mental Health and Wellbeing (n = 8841). The HRQoL scores were measured using the Assessment of Quality of Life (AQoL-4D) instrument. The simple count (2+ & 3+ conditions) and hierarchical cluster methods were used to define/identify clusters of multimorbidity. Linear regression was used to assess the associations between HRQoL and multimorbidity as defined by the different methods. RESULTS: The assessment of multimorbidity, which was defined using the count method, resulting in the prevalence of 26% (MM2+) and 10.1% (MM3+). Statistically significant clusters identified through hierarchical cluster analysis included heart or circulatory conditions (CVD)/arthritis (cluster-1, 9%) and major depressive disorder (MDD)/anxiety (cluster-2, 4%). A sensitivity analysis suggested that the stability of the clusters resulted from hierarchical clustering. The sociodemographic profiles were similar between MM2+, MM3+ and cluster-1, but were different from cluster-2. HRQoL was negatively associated with MM2+ (β: -0.18, SE: -0.01, p < 0.001), MM3+ (β: -0.23, SE: -0.02, p < 0.001), cluster-1 (β: -0.10, SE: 0.01, p < 0.001) and cluster-2 (β: -0.36, SE: 0.01, p < 0.001). CONCLUSIONS: Our findings confirm the existence of an inverse relationship between multimorbidity and HRQoL in the Australian population and indicate that the hierarchical clustering approach is validated when the outcome of interest is HRQoL from this head-to-head comparison. Moreover, a simple count fails to identify if there are specific conditions of interest that are driving poorer HRQoL. Researchers should exercise caution when selecting a definition of multimorbidity because it may significantly influence the study outcomes.
Export Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References