Show simple item record

dc.contributor.authorJankowicz-Cieslak, J
dc.contributor.authorHuynh, OA
dc.contributor.authorBrozynska, M
dc.contributor.authorNakitandwe, J
dc.contributor.authorTill, BJ
dc.date.accessioned2020-12-22T03:02:17Z
dc.date.available2020-12-22T03:02:17Z
dc.date.issued2012-12
dc.identifier.citationJankowicz-Cieslak, J., Huynh, O. A., Brozynska, M., Nakitandwe, J. & Till, B. J. (2012). Induction, rapid fixation and retention of mutations in vegetatively propagated banana.. Plant Biotechnol J, 10 (9), pp.1056-1066. https://doi.org/10.1111/j.1467-7652.2012.00733.x.
dc.identifier.issn1467-7644
dc.identifier.urihttp://hdl.handle.net/11343/257764
dc.description.abstractMutation discovery technologies have enabled the development of reverse genetics for many plant species and allowed sophisticated evaluation of the consequences of mutagenesis. Such methods are relatively straightforward for seed-propagated plants. To develop a platform suitable for vegetatively propagated species, we treated isolated banana shoot apical meristems with the chemical mutagen ethyl methanesulphonate, recovered plantlets and screened for induced mutations. A high density of GC-AT transition mutations were recovered, similar to that reported in seed-propagated polyploids. Through analysis of the inheritance of mutations, we observed that genotypically heterogeneous stem cells resulting from mutagenic treatment are rapidly sorted to fix a single genotype in the meristem. Further, mutant genotypes are stably inherited in subsequent generations. Evaluation of natural nucleotide variation showed the accumulation of potentially deleterious heterozygous alleles, suggesting that mutation induction may uncover recessive traits. This work therefore provides genotypic insights into the fate of totipotent cells after mutagenesis and suggests rapid approaches for mutation-based functional genomics and improvement of vegetatively propagated crops.
dc.languageeng
dc.publisherWiley
dc.titleInduction, rapid fixation and retention of mutations in vegetatively propagated banana.
dc.typeJournal Article
dc.identifier.doi10.1111/j.1467-7652.2012.00733.x
melbourne.affiliation.departmentSchool of BioSciences
melbourne.source.titlePlant Biotechnology Journal
melbourne.source.volume10
melbourne.source.issue9
melbourne.source.pages1056-1066
dc.rights.licenseCC BY
melbourne.elementsid1124279
melbourne.openaccess.pmchttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533788
melbourne.contributor.authorBROZYNSKA, MARTA
dc.identifier.eissn1467-7652
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record