University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Florey Department of Neuroscience and Mental Health
  • Florey Department of Neuroscience and Mental Health - Theses
  • View Item
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Florey Department of Neuroscience and Mental Health
  • Florey Department of Neuroscience and Mental Health - Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Role of MERTK in Central Inflammatory Demyelination

    Thumbnail
    Download
    Final thesis file (3.633Mb)

    Citations
    Altmetric
    Author
    Dwyer, Christopher Michael
    Date
    2020
    Affiliation
    Florey Department of Neuroscience and Mental Health
    Metadata
    Show full item record
    Document Type
    PhD thesis
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/257813
    Description

    © 2020 Christopher Michael Dwyer

    Abstract
    Multiple sclerosis (MS) is, at least in part, an autoimmune demyelinating disease of the central nervous system. It is the most common cause of neurological dysfunction in young adults. In addition to demyelination, autoimmune destruction in MS results in oligodendrocyte loss, local inflammation and neurodegeneration. Later in the disease course, a pattern of neurodegeneration may emerge without obvious evidence of adaptive immune activation. Current evidence implicates dysregulation of the innate immune system as a major contributor to the neurodegeneration of progressive MS. It is well established that innate immunity influences central nervous system damage and modulates myelin repair. The TAMs (TYRO3, AXL and MERTK) are a family of receptor tyrosine kinases expressed by discrete innate immune cell types, including macrophages, microglia and dendritic cells. They are involved the homeostatic regulation of adult, fully differentiated tissues that are subject to constant intrinsic and environmental challenge. The primary aim of this thesis was to provide additional insight into the biology of the MERTK receptor by examining its role in commonly employed mouse models of MS. In addition, I sought to identify whether serum levels of MERTK correlated with disease activity in MS patients experiencing relapse. I established that heterozygote deletion of Mertk in CD11+ve cells worsens the clinical severity of EAE in male mice, demonstrating for the first time that changes in the expression of a TAM receptor can alter the outcomes of a model of MS. Conversely, homozygous deletion did not result in EAE exacerbation. Heterozygote deletion of Mertk in CD11+ve cells does not alter the outcomes of cuprizone-induced demyelination, suggesting that CNS-resident CD11c+ve cells (microglia) are not implicated in the clinical exacerbation observed in EAE cohorts. In human subjects, MERTK expression by monocytes and dendritic cells does not correlate with periods of increased inflammatory activity in MS. MERTK expression by circulating dendritic cells is very limited. Taken together, the data in this thesis offer compelling evidence that MERTK is an important regulator of the outcomes of central inflammatory demyelination. They justify further research efforts in this area to better understand the mechanism of these disease states and to develop therapeutic targets for the treatment of MS.
    Keywords
    Multiple Sclerosis; Experimental Autoimmune Encephalomyelitis; Cuprizone Intoxication; TAM Receptors; MERTK; TYRO3; AXL; Sexual Dimorphism

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [45770]
    • Florey Department of Neuroscience and Mental Health - Theses [124]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors