University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Melbourne Medical School
  • Medicine and Radiology
  • Medicine and Radiology - Research Publications
  • View Item
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Melbourne Medical School
  • Medicine and Radiology
  • Medicine and Radiology - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    The diminishing dominance of the dominant hemisphere: Language fMRI in focal epilepsy

    Thumbnail
    Download
    Published version (1.565Mb)

    Citations
    Scopus
    Web of Science
    Altmetric
    15
    11
    Author
    Tailby, C; Abbott, DF; Jackson, GD
    Date
    2017-01-01
    Source Title
    NeuroImage: Clinical
    Publisher
    ELSEVIER SCI LTD
    University of Melbourne Author/s
    Tailby, Christopher; Abbott, David; Jackson, Graeme
    Affiliation
    Medicine and Radiology
    Melbourne School of Psychological Sciences
    Florey Department of Neuroscience and Mental Health
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Tailby, C., Abbott, D. F. & Jackson, G. D. (2017). The diminishing dominance of the dominant hemisphere: Language fMRI in focal epilepsy. NEUROIMAGE-CLINICAL, 14, pp.141-150. https://doi.org/10.1016/j.nicl.2017.01.011.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/257949
    DOI
    10.1016/j.nicl.2017.01.011
    Abstract
    "Which is the dominant hemisphere?" is a question that arises frequently in patients considered for neurosurgery. The concept of the dominant hemisphere implies uniformity of language lateralisation throughout the brain. It is increasingly recognised that this is not the case in the healthy control brain, and it is especially not so in neurological diseases such as epilepsy. In the present work we adapt our published objective lateralisation method (based on the construction of laterality curves) for use with sub-lobar cortical, subcortical and cerebellar regions of interest (ROIs). We apply this method to investigate regional lateralisation of language activation in 12 healthy controls and 18 focal epilepsy patients, using three different block design language fMRI paradigms, each tapping different aspects of language processing. We compared lateralisation within each ROI across tasks, and investigated how the quantity of data collected affected the ability to robustly estimate laterality across ROIs. In controls, lateralisation was stronger, and the variance across individuals smaller, in cortical ROIs, particularly in the Inferior Frontal (Broca) region. Lateralisation within temporal ROIs was dependent on the nature of the language task employed. One of the healthy controls was left lateralised anteriorly and right lateralised posteriorly. Consistent with previous work, departures from normality occurred in ~ 15-50% of focal epilepsy patients across the different ROIs, with atypicality most common in the Lateral Temporal (Wernicke) region. Across tasks and ROIs the absolute magnitude of the laterality estimate increased and its across participant variance decreased as more cycles of task and rest were included, stabilising at ~ 4 cycles (~ 4 min of data collection). Our data highlight the importance of considering language as a complex task where lateralisation varies at the subhemispheric scale. This is especially important for presurgical planning for focal resections where the concept of 'hemispheric dominance' may be misleading. This is a precision medicine approach that enables objective evaluation of language dominance within specific brain regions and can reveal surprising and unexpected anomalies that may be clinically important for individual cases.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [45770]
    • Florey Department of Neuroscience and Mental Health - Research Publications [1052]
    • Melbourne School of Psychological Sciences - Research Publications [1051]
    • Medicine and Radiology - Research Publications [2347]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors