University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Medical Biology
  • Medical Biology - Research Publications
  • View Item
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Medical Biology
  • Medical Biology - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Two Essential Light Chains Regulate the MyoA Lever Arm To Promote Toxoplasma Gliding Motility

    Thumbnail
    Download
    Published version (3.719Mb)

    Citations
    Scopus
    Web of Science
    Altmetric
    23
    21
    Author
    Williams, MJ; Alonso, H; Enciso, M; Egarter, S; Sheiner, L; Meissner, M; Striepen, B; Smith, BJ; Tonkin, CJ
    Date
    2015-09-01
    Source Title
    mBio
    Publisher
    AMER SOC MICROBIOLOGY
    University of Melbourne Author/s
    Tonkin, Christopher; ALONSO, HERNAN; WILLIAMS, MELANIE
    Affiliation
    Medical Biology (W.E.H.I.)
    University General
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Williams, M. J., Alonso, H., Enciso, M., Egarter, S., Sheiner, L., Meissner, M., Striepen, B., Smith, B. J. & Tonkin, C. J. (2015). Two Essential Light Chains Regulate the MyoA Lever Arm To Promote Toxoplasma Gliding Motility. MBIO, 6 (5), https://doi.org/10.1128/mBio.00845-15.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/258040
    DOI
    10.1128/mBio.00845-15
    Abstract
    UNLABELLED: Key to the virulence of apicomplexan parasites is their ability to move through tissue and to invade and egress from host cells. Apicomplexan motility requires the activity of the glideosome, a multicomponent molecular motor composed of a type XIV myosin, MyoA. Here we identify a novel glideosome component, essential light chain 2 (ELC2), and functionally characterize the two essential light chains (ELC1 and ELC2) of MyoA in Toxoplasma. We show that these proteins are functionally redundant but are important for invasion, egress, and motility. Molecular simulations of the MyoA lever arm identify a role for Ca(2+) in promoting intermolecular contacts between the ELCs and the adjacent MLC1 light chain to stabilize this domain. Using point mutations predicted to ablate either the interaction with Ca(2+) or the interface between the two light chains, we demonstrate their contribution to the quality, displacement, and speed of gliding Toxoplasma parasites. Our work therefore delineates the importance of the MyoA lever arm and highlights a mechanism by which this domain could be stabilized in order to promote invasion, egress, and gliding motility in apicomplexan parasites. IMPORTANCE: Tissue dissemination and host cell invasion by apicomplexan parasites such as Toxoplasma are pivotal to their pathogenesis. Central to these processes is gliding motility, which is driven by an actomyosin motor, the MyoA glideosome. Others have demonstrated the importance of the MyoA glideosome for parasite motility and virulence in mice. Disruption of its function may therefore have therapeutic potential, and yet a deeper mechanistic understanding of how it works is required. Ca(2+)-dependent and -independent phosphorylation and the direct binding of Ca(2+) to the essential light chain have been implicated in the regulation of MyoA activity. Here we identify a second essential light chain of MyoA and demonstrate the importance of both to Toxoplasma motility. We also investigate the role of Ca(2+) and the MyoA regulatory site in parasite motility and identify a potential mechanism whereby binding of a divalent cation to the essential light chains could stabilize the myosin to allow productive movement.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [53102]
    • University General - Research Publications [467]
    • Medical Biology - Research Publications [1415]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors