University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Engineering and Information Technology
  • Computing and Information Systems
  • Computing and Information Systems - Research Publications
  • View Item
  • Minerva Access
  • Engineering and Information Technology
  • Computing and Information Systems
  • Computing and Information Systems - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    MeSH indexing based on automatically generated summaries

    Thumbnail
    Download
    Published version (1.151Mb)

    Citations
    Scopus
    Altmetric
    19
    Author
    Jimeno-Yepes, AJ; Plaza, L; Mork, JG; Aronson, AR; Diaz, A
    Date
    2013-06-26
    Source Title
    BMC Bioinformatics
    Publisher
    BMC
    University of Melbourne Author/s
    Jimeno Yepes, Antonio
    Affiliation
    Computing and Information Systems
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Jimeno-Yepes, A. J., Plaza, L., Mork, J. G., Aronson, A. R. & Diaz, A. (2013). MeSH indexing based on automatically generated summaries. BMC BIOINFORMATICS, 14 (1), https://doi.org/10.1186/1471-2105-14-208.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/259048
    DOI
    10.1186/1471-2105-14-208
    Abstract
    BACKGROUND: MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. RESULTS: We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. CONCLUSIONS: Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [52443]
    • Computing and Information Systems - Research Publications [1565]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors