edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

Download
Author
Robinson, MD; McCarthy, DJ; Smyth, GKDate
2010-01-01Source Title
BioinformaticsPublisher
OXFORD UNIV PRESSAffiliation
School of Mathematics and StatisticsMetadata
Show full item recordDocument Type
Journal ArticleCitations
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. BIOINFORMATICS, 26 (1), pp.139-140. https://doi.org/10.1093/bioinformatics/btp616.Access Status
Open AccessAbstract
SUMMARY: It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. AVAILABILITY: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org).
Export Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References