Show simple item record

dc.contributor.authorAhmed, N
dc.contributor.authorGreening, D
dc.contributor.authorSamardzija, C
dc.contributor.authorEscalona, RM
dc.contributor.authorChen, M
dc.contributor.authorFindlay, JK
dc.contributor.authorKannourakis, G
dc.date.accessioned2021-02-05T00:36:34Z
dc.date.available2021-02-05T00:36:34Z
dc.date.issued2016-07-29
dc.identifierpii: srep30061
dc.identifier.citationAhmed, N., Greening, D., Samardzija, C., Escalona, R. M., Chen, M., Findlay, J. K. & Kannourakis, G. (2016). Unique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells. SCIENTIFIC REPORTS, 6 (1), https://doi.org/10.1038/srep30061.
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/11343/260075
dc.description.abstractEighty % of ovarian cancer patients diagnosed at an advanced-stage have complete remission after initial surgery and chemotherapy. However, most patients die within <5 years due to episodes of recurrences resulting from the growth of residual chemoresistant cells. In an effort to identify mechanisms associated with chemoresistance and recurrence, we compared the expression of proteins in ascites-derived tumor cells isolated from advanced-stage ovarian cancer patients obtained at diagnosis (chemonaive, CN) and after chemotherapy treatments (chemoresistant/at recurrence, CR) by using in-depth, high-resolution label-free quantitative proteomic profiling. A total of 2,999 proteins were identified. Using a stringent selection criterion to define only significantly differentially expressed proteins, we report identification of 353 proteins. There were significant differences in proteins encoding for immune surveillance, DNA repair mechanisms, cytoskeleton rearrangement, cell-cell adhesion, cell cycle pathways, cellular transport, and proteins involved with glycine/proline/arginine synthesis in tumor cells isolated from CR relative to CN patients. Pathway analyses revealed enrichment of metabolic pathways, DNA repair mechanisms and energy metabolism pathways in CR tumor cells. In conclusion, this is the first proteomics study to comprehensively analyze ascites-derived tumor cells from CN and CR ovarian cancer patients.
dc.languageEnglish
dc.publisherNATURE PUBLISHING GROUP
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.titleUnique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells
dc.typeJournal Article
dc.identifier.doi10.1038/srep30061
melbourne.affiliation.departmentObstetrics and Gynaecology
melbourne.affiliation.department
melbourne.affiliation.facultyMedicine, Dentistry & Health Sciences
melbourne.source.titleScientific Reports
melbourne.source.volume6
melbourne.source.issue1
dc.rights.licenseCC BY
melbourne.elementsid1089561
melbourne.contributor.authorAhmed, Nuzhat
melbourne.contributor.authorFindlay, John
melbourne.contributor.authorSAMARDZIJA, CHANTEL
melbourne.contributor.authorEscalona, Ruth
dc.identifier.eissn2045-2322
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record