Show simple item record

dc.contributor.authorReimer, LJ
dc.contributor.authorThomsen, EK
dc.contributor.authorKoimbu, G
dc.contributor.authorKeven, JB
dc.contributor.authorMueller, I
dc.contributor.authorSiba, PM
dc.contributor.authorKazura, JW
dc.contributor.authorHetzel, MW
dc.contributor.authorZimmerman, PA
dc.date.accessioned2021-02-05T00:45:39Z
dc.date.available2021-02-05T00:45:39Z
dc.date.issued2016-01-12
dc.identifierpii: 10.1186/s12936-015-1067-7
dc.identifier.citationReimer, L. J., Thomsen, E. K., Koimbu, G., Keven, J. B., Mueller, I., Siba, P. M., Kazura, J. W., Hetzel, M. W. & Zimmerman, P. A. (2016). Malaria transmission dynamics surrounding the first nationwide long-lasting insecticidal net distribution in Papua New Guinea. MALARIA JOURNAL, 15 (1), https://doi.org/10.1186/s12936-015-1067-7.
dc.identifier.issn1475-2875
dc.identifier.urihttp://hdl.handle.net/11343/260138
dc.description.abstractBACKGROUND: The major malaria vectors of Papua New Guinea exhibit heterogeneities in distribution, biting behaviour and malaria infection levels. Long-lasting, insecticide-treated nets (LLINs), distributed as part of the National Malaria Control Programme, are the primary intervention targeting malaria transmission. This study evaluated the impact of LLINs on anopheline density, species composition, feeding behaviour, and malaria transmission. METHODS: Mosquitoes were collected by human landing catch in 11 villages from East Sepik Province and Madang Province. Mosquitoes were collected for 3 years (1 year before distribution and 2 years after), and assayed to determine mosquito species and Plasmodium spp. infection prevalence. The influence of weather conditions and the presence of people and animals on biting density was determined. Determinants of biting density and sporozoite prevalence were analysed by generalized estimating equations (GEE). RESULTS: Mosquito biting rates and entomological inoculation rates decreased significantly after the distribution. Plasmodium falciparum and P. vivax sporozoite prevalence decreased in year 2, but increased in year 3, suggesting the likelihood of resurgence in transmission if low biting rates are not maintained. An earlier shift in the median biting time of Anopheles punctulatus and An. farauti s.s. was observed. However, this was not accompanied by an increase in the proportion of infective bites occurring before 2200 hours. A change in species composition was observed, which resulted in dominance of An. punctulatus in Dreikikir region, but a decrease in An. punctulatus in the Madang region. When controlling for village and study year, An. farauti s.s., An. koliensis and An. punctulatus were equally likely to carry P. vivax sporozoites. However, An. punctulatus was significantly more likely than An. farauti s.s. (OR 0.14; p = 0.007) or An. koliensis (OR 0.27; p < 0.001) to carry P. falciparum sporozoites. CONCLUSIONS: LLINs had a significant impact on malaria transmission, despite exophagic and crepuscular feeding behaviours of dominant vectors. Changes in species composition and feeding behaviour were observed, but their epidemiological significance will depend on their durability over time.
dc.languageEnglish
dc.publisherBIOMED CENTRAL LTD
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.titleMalaria transmission dynamics surrounding the first nationwide long-lasting insecticidal net distribution in Papua New Guinea
dc.typeJournal Article
dc.identifier.doi10.1186/s12936-015-1067-7
melbourne.affiliation.departmentMedical Biology (W.E.H.I.)
melbourne.affiliation.facultyMedicine, Dentistry & Health Sciences
melbourne.source.titleMalaria Journal
melbourne.source.volume15
melbourne.source.issue1
dc.rights.licenseCC BY
melbourne.elementsid1035646
melbourne.contributor.authorMueller, Ivo
dc.identifier.eissn1475-2875
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record