University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Science
  • School of BioSciences
  • School of BioSciences - Research Publications
  • View Item
  • Minerva Access
  • Science
  • School of BioSciences
  • School of BioSciences - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Association of Increased Grain Iron and Zinc Concentrations with Agro-morphological Traits of Biofortified Rice

    Thumbnail
    Download
    Published version (1.944Mb)

    Citations
    Scopus
    Altmetric
    11
    Author
    Moreno-Moyano, LT; Bonneau, JP; Sanchez-Palacios, JT; Tohme, J; Johnson, AAT
    Date
    2016-09-28
    Source Title
    Frontiers in Plant Science
    Publisher
    FRONTIERS MEDIA SA
    University of Melbourne Author/s
    Johnson, Alexander; Bonneau, Julien; MORENO MOYANO, LAURA; Sanchez-Palacios, Jose
    Affiliation
    School of BioSciences
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Moreno-Moyano, L. T., Bonneau, J. P., Sanchez-Palacios, J. T., Tohme, J. & Johnson, A. A. T. (2016). Association of Increased Grain Iron and Zinc Concentrations with Agro-morphological Traits of Biofortified Rice. FRONTIERS IN PLANT SCIENCE, 7 (September2016), https://doi.org/10.3389/fpls.2016.01463.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/260307
    DOI
    10.3389/fpls.2016.01463
    Abstract
    Biofortification of rice (Oryza sativa L.) with micronutrients is widely recognized as a sustainable strategy to alleviate human iron (Fe) and zinc (Zn) deficiencies in developing countries where rice is the staple food. Constitutive overexpression of the rice nicotianamine synthase (OsNAS) genes has been successfully implemented to increase Fe and Zn concentrations in unpolished and polished rice grain. Intensive research is now needed to couple this high-micronutrient trait with high grain yields. We investigated associations of increased grain Fe and Zn concentrations with agro-morphological traits of backcross twice second filial (BC2F2) transgenic progeny carrying OsNAS1 or OsNAS2 overexpression constructs under indica/japonica and japonica/japonica genetic backgrounds. Thirteen agro-morphological traits were evaluated in BC2F2 transgenic progeny grown under hydroponic conditions. Concentrations of eight mineral nutrients (Fe, Zn, copper, manganese, calcium, magnesium, potassium, and phosphorus) in roots, stems/sheaths, non-flag leaves, flag leaves, panicles, and grain were also determined. A distance-based linear model (DistLM) was utilized to extract plant tissue nutrient predictors accounting for the largest variation in agro-morphological traits differing between transgenic and non-transgenic progeny. Overall, the BC2F2 transgenic progeny contained up to 148% higher Fe and 336% higher Zn concentrations in unpolished grain compared to non-transgenic progeny. However, unpolished grain concentrations surpassing 23 μg Fe g-1 and 40 μg Zn g-1 in BC2F2indica/japonica progeny, and 36 μg Fe g-1 and 56 μg Zn g1 in BC2F2japonica/japonica progeny, were associated with significant reductions in grain yield. DistLM analyses identified grain-Zn and panicle-magnesium as the primary nutrient predictors associated with grain yield reductions in the indica/japonica and japonica/japonica background, respectively. We subsequently produced polished grain from high-yield BC2F2 transgenic progeny carrying either the OsNAS1 or OsNAS2 overexpression constructs. The OsNAS2 overexpressing progeny had higher percentages of Fe and Zn in polished rice grain compared to the OsNAS1 overexpressing progeny. Results from this study demonstrate that genetic background has a major effect on the development of Fe and Zn biofortified rice. Moreover, our study shows that high-yielding rice lines with Fe and Zn biofortified polished grain can be developed by OsNAS2 overexpression and monitoring for Zn overaccumulation in the grain.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [52369]
    • School of BioSciences - Research Publications [1504]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors