University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Florey Department of Neuroscience and Mental Health
  • Florey Department of Neuroscience and Mental Health - Research Publications
  • View Item
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Florey Department of Neuroscience and Mental Health
  • Florey Department of Neuroscience and Mental Health - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Altered brain arginine metabolism in schizophrenia

    Thumbnail
    Download
    Published version (1.624Mb)

    Citations
    Scopus
    Altmetric
    29
    Author
    Liu, P; Jing, Y; Collie, ND; Dean, B; Bilkey, DK; Zhang, H
    Date
    2016-08-16
    Source Title
    Translational Psychiatry
    Publisher
    NATURE PUBLISHING GROUP
    University of Melbourne Author/s
    Dean, Brian
    Affiliation
    Florey Department of Neuroscience and Mental Health
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Liu, P., Jing, Y., Collie, N. D., Dean, B., Bilkey, D. K. & Zhang, H. (2016). Altered brain arginine metabolism in schizophrenia. TRANSLATIONAL PSYCHIATRY, 6 (8), https://doi.org/10.1038/tp.2016.144.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/260358
    DOI
    10.1038/tp.2016.144
    Abstract
    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [52609]
    • Florey Department of Neuroscience and Mental Health - Research Publications [1312]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors