Show simple item record

dc.contributor.authorMar, JC
dc.contributor.authorWells, CA
dc.contributor.authorQuackenbush, J
dc.date.accessioned2021-02-05T01:37:58Z
dc.date.available2021-02-05T01:37:58Z
dc.date.issued2011-04-15
dc.identifierpii: btr074
dc.identifier.citationMar, J. C., Wells, C. A. & Quackenbush, J. (2011). Defining an informativeness metric for clustering gene expression data. BIOINFORMATICS, 27 (8), pp.1094-1100. https://doi.org/10.1093/bioinformatics/btr074.
dc.identifier.issn1367-4803
dc.identifier.urihttp://hdl.handle.net/11343/260473
dc.description.abstractMOTIVATION: Unsupervised 'cluster' analysis is an invaluable tool for exploratory microarray data analysis, as it organizes the data into groups of genes or samples in which the elements share common patterns. Once the data are clustered, finding the optimal number of informative subgroups within a dataset is a problem that, while important for understanding the underlying phenotypes, is one for which there is no robust, widely accepted solution. RESULTS: To address this problem we developed an 'informativeness metric' based on a simple analysis of variance statistic that identifies the number of clusters which best separate phenotypic groups. The performance of the informativeness metric has been tested on both experimental and simulated datasets, and we contrast these results with those obtained using alternative methods such as the gap statistic. AVAILABILITY: The method has been implemented in the Bioconductor R package attract; it is also freely available from http://compbio.dfci.harvard.edu/pubs/attract_1.0.1.zip. CONTACT: jess@jimmy.harvard.edu; johnq@jimmy.harvard.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
dc.languageEnglish
dc.publisherOXFORD UNIV PRESS
dc.titleDefining an informativeness metric for clustering gene expression data
dc.typeJournal Article
dc.identifier.doi10.1093/bioinformatics/btr074
melbourne.affiliation.departmentAnatomy and Neuroscience
melbourne.affiliation.facultyMedicine, Dentistry & Health Sciences
melbourne.source.titleBioinformatics
melbourne.source.volume27
melbourne.source.issue8
melbourne.source.pages1094-1100
dc.rights.licenseCC BY-NC
melbourne.elementsid1062897
melbourne.contributor.authorWells, Christine
dc.identifier.eissn1460-2059
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record