Show simple item record

dc.contributor.authorShilton, A
dc.contributor.authorLai, DTH
dc.contributor.authorPalaniswami, M
dc.date.available2014-05-21T20:39:40Z
dc.date.issued2010-04-01
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000275665300020&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=d4d813f4571fa7d6246bdc0dfeca3a1c
dc.identifier.citationShilton, A., Lai, D. T. H. & Palaniswami, M. (2010). A Division Algebraic Framework for Multidimensional Support Vector Regression. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 40 (2), pp.517-528. https://doi.org/10.1109/TSMCB.2009.2028314.
dc.identifier.issn1083-4419
dc.identifier.urihttp://hdl.handle.net/11343/27666
dc.descriptionC1 - Journal Articles Refereed
dc.description.abstractIn this paper, division algebras are proposed as an elegant basis upon which to extend support vector regression (SVR) to multidimensional targets. Using this framework, a multitarget SVR called epsilon(Z)-SVR is proposed based on an epsilon-insensitive loss function that is independent of the coordinate system or basis used. This is developed to dual form in a manner that is analogous to the standard epsilon-SVR. The epsilon(H)-SVR is compared and contrasted with the least-square SVR (LS-SVR), the Clifford SVR (C-SVR), and the multidimensional SVR (M-SVR). Three practical applications are considered: namely, 1) approximation of a complex-valued function; 2) chaotic time-series prediction in 3-D; and 3) communication channel equalization. Results show that the epsilon(H)-SVR performs significantly better than the C-SVR, the LS-SVR, and the M-SVR in terms of mean-squared error, outlier sensitivity, and support vector sparsity.
dc.languageEnglish
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.subjectElectrical and Electronic Engineering not elsewhere classified; Expanding Knowledge in Engineering
dc.titleA Division Algebraic Framework for Multidimensional Support Vector Regression
dc.typeJournal Article
dc.identifier.doi10.1109/TSMCB.2009.2028314
melbourne.peerreviewPeer Reviewed
melbourne.affiliationThe University of Melbourne
melbourne.affiliation.departmentElectrical And Electronic Engineering
melbourne.source.titleIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS
melbourne.source.volume40
melbourne.source.issue2
melbourne.source.pages517-528
dc.research.codefor090699
dc.research.codeseo2008970109
melbourne.publicationid137929
melbourne.elementsid318375
melbourne.contributor.authorSHILTON, ALISTAIR
melbourne.contributor.authorPalaniswami, Marimuthu
dc.identifier.eissn1941-0492
melbourne.accessrightsThis item is currently not available from this repository


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record