Show simple item record

dc.contributor.authorRESTALL, GA
dc.date.available2014-05-21T22:34:53Z
dc.date.issued2005
dc.identifier.citationRESTALL, G. A. (2005). Constant domain quantified modal logics without Boolean negation. Australasian Journal of Logic, 3, pp.45-62. https://doi.org/10.26686/ajl.v3i0.1772.
dc.identifier.issn1448-5052
dc.identifier.urihttp://hdl.handle.net/11343/29126
dc.descriptionC1 - Refereed Journal Article
dc.description.abstractThis paper provides a sound and complete axiomatisation for constant domain modal logics without Boolean negation. This is a simpler case of the difficult problem of providing a sound and complete axiomatisation for constant-domain quantified relevant logics, which can be seen as a kind of modal logic with a twoplace modal operator, the relevant conditional. The completeness proof is adapted from a proof for classical modal predicate logic (I follow James Garson’s presentation of the completeness proof quite closely [10]), but with an important twist, to do with the absence of Boolean negation.
dc.publisherVictoria University of Wellington
dc.subjectPhilosophy
dc.titleConstant domain quantified modal logics without Boolean negation
dc.typeJournal Article
dc.identifier.doi10.26686/ajl.v3i0.1772
melbourne.peerreviewPeer Reviewed
melbourne.affiliationThe University of Melbourne
melbourne.affiliation.departmentPhilosophy, Anthropology and Social Inquiry
melbourne.source.titleThe Australasian Journal of Logic
melbourne.source.volume3
melbourne.source.pages45-62
melbourne.publicationid43582
melbourne.elementsid273499
melbourne.contributor.authorRestall, Gregory
dc.identifier.eissn1448-5052
melbourne.accessrightsThis item is currently not available from this repository


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record