Genetics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Expression of insect α6-like nicotinic acetylcholine receptors in Drosophila melanogaster highlights a high level of conservation of the receptor:spinosyn interaction
    Perry, T ; Somers, J ; Yang, YT ; Batterham, P (PERGAMON-ELSEVIER SCIENCE LTD, 2015-09)
    Insecticide research has often relied on model species for elucidating the resistance mechanisms present in the targeted pests. The accuracy and applicability of extrapolations of these laboratory findings to field conditions varies but, for target site resistance, conserved mechanisms are generally the rule rather than the exception (Perry et al., 2011). The spinosyn class of insecticides appear to fit this paradigm and are a pest control option with many uses in both crop and animal protection. Resistance to spinosyns has been identified in both laboratory-selected and field-collected pest insects. Studies using the model insect, Drosophila melanogaster, have identified the nicotinic acetylcholine receptor subunit, Dα6 as an important target of the insecticide spinosad (Perry et al., 2007; Watson et al., 2010). Field-isolated resistant strains of several agricultural pest insects provide evidence that resistance cases are often associated with mutations in orthologues to Dα6 (Baxter et al., 2010; Puinean et al., 2013). The expression of these receptors is difficult in heterologous systems. In order to examine the biology of the Dα6 receptor subunit further, we used Drosophila as a model and developed an in vivo rescue system. This allowed us to express four different isoforms of Dα6 and show that each is able to rescue the response to spinosad. Regulatory sequences upstream of the Dα6 gene able to rescue the resistance phenotype were identified. Expression of other D. melanogaster subunits revealed that the rescue phenotype appears to be Dα6 specific. We also demonstrate that expression of pest insect orthologues of Dα6 from a variety of species are capable of rescuing the spinosad response phenotype, verifying the relevance of this receptor to resistance monitoring in the field. In the absence of a robust heterologous expression system, this study presents an in vivo model that will be useful in analysing many other aspects of these receptors and their biology.
  • Item
    Thumbnail Image
    The Wiggle Index: An Open Source Bioassay to Assess Sub-Lethal Insecticide Response in Drosophila melanogaster
    Denecke, S ; Nowell, CJ ; Fournier-Level, A ; Perry, T ; Batterham, P ; Guedes, RNC (PUBLIC LIBRARY SCIENCE, 2015-12-18)
    Toxicological assays measuring mortality are routinely used to describe insecticide response, but sub-lethal exposures to insecticides can select for resistance and yield additional biological information describing the ways in which an insecticide impacts the insect. Here we present the Wiggle Index (WI), a high-throughput method to quantify insecticide response by measuring the reduction in motility during sub-lethal exposures in larvae of the vinegar fly Drosophila melanogaster. A susceptible wild type strain was exposed to the insecticides chlorantraniliprole, imidacloprid, spinosad, and ivermectin. Each insecticide reduced larval motility, but response times and profiles differed among insecticides. Two sets of target site mutants previously identified in mortality studies on the basis of imidacloprid or spinosad resistance phenotypes were tested. In each case the resistant mutant responded significantly less than the control. The WI was also able to detect a spinosad response in the absence of the primary spinosad target site. This response was not detected in mortality assays suggesting that spinosad, like many other insecticides, may have secondary targets affecting behaviour. The ability of the WI to detect changes in insecticide metabolism was confirmed by overexpressing the imidacloprid metabolizing Cyp6g1 gene in digestive tissues or the central nervous system. The data presented here validate the WI as an inexpensive, generic, sub-lethal assay that can complement information gained from mortality assays, extending our understanding of the genetic basis of insecticide response in D. melanogaster.
  • Item
    Thumbnail Image
    Association between Three Mutations, F1565C, V1023G and S996P, in the Voltage-Sensitive Sodium Channel Gene and Knockdown Resistance in Aedes aegypti from Yogyakarta, Indonesia
    Wuliandari, JR ; Lee, SF ; White, VL ; Tantowijoyo, W ; Hoffmann, AA ; Endersby-Harshman, NM (MDPI, 2015-09)
    Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) genotyping assays for assessing mutations found in Ae. aegypti in Indonesia (F1565C, V1023G, S996P) and use them to test for associations with pyrethroid resistance in mosquitoes from Yogyakarta, a city where insecticide use is widespread. Such knowledge is important because Yogyakarta is a target area for releases of Wolbachia-infected mosquitoes with virus-blocking traits for dengue suppression. We identify three alleles across Yogyakarta putatively linked to resistance in previous research. By comparing resistant and susceptible mosquitoes from bioassays, we show that the 1023G allele is associated with resistance to type I and type II pyrethroids. In contrast, F1565C homozygotes were rare and there was only a weak association between individuals heterozygous for the mutation and resistance to a type I pyrethroid. As the heterozygote is expected to be incompletely recessive, it is likely that this association was due to a different resistance mechanism being present. A resistance advantage conferred to V1023G homozygotes through addition of the S996P allele in the homozygous form was suggested for the Type II pyrethroid, deltamethrin. Screening of V1023G and S996P should assist resistance monitoring in Ae. aegypti from Yogyakarta, and these mutations should be maintained in Wolbachia strains destined for release in this city to ensure that these virus-blocking strains of mosquitoes are not disadvantaged, relative to resident populations.
  • Item
    Thumbnail Image
    Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein
    Tay, WT ; Mahon, RJ ; Heckel, DG ; Walsh, TK ; Downes, S ; James, WJ ; Lee, S-F ; Reineke, A ; Williams, AK ; Gordon, KHJ ; Malik, HS (Public Library of Science (PLoS), 2015-11-01)
    The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton) expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests) to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC) marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC) transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the detailed mode-of-action of the two Bt Cry toxins.
  • Item
    Thumbnail Image
    FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor
    Bonaccorso, O ; Lee, JE ; Puah, L ; Scutt, CP ; Golz, JF (BMC, 2012-10-01)
    BACKGROUND: The YABBY (YAB) family of transcription factors participate in a diverse range of processes that include leaf and floral patterning, organ growth, and the control of shoot apical meristem organisation and activity. How these disparate functions are regulated is not clear, but based on interactions with the LEUNIG-class of co-repressors, it has been proposed that YABs act as transcriptional repressors. In the light of recent work showing that DNA-binding proteins associated with the yeast co-repressor TUP1 can also function as activators, we have examined the transcriptional activity of the YABs. RESULTS: Of the four Arabidopsis YABs tested in yeast, only FILAMENTOUS FLOWER (FIL) activated reporter gene expression. Similar analysis with Antirrhinum YABs identified the FIL ortholog GRAMINIFOLIA as an activator. Plant-based transactivation assays not only confirmed the potential of FIL to activate transcription, but also extended this property to the FIL paralog YABBY3 (YAB3). Subsequent transcriptomic analysis of lines expressing a steroid-inducible FIL protein revealed groups of genes that responded either positively or negatively to YAB induction. Included in the positively regulated group of genes were the polarity regulators KANADI1 (KAN1), AUXIN RESPONSE FACTOR 4 (ARF4) and ASYMMETRIC LEAVES1 (AS1). We also show that modifying FIL to function as an obligate repressor causes strong yab loss-of-function phenotypes. CONCLUSIONS: Collectively these data show that FIL functions as a transcriptional activator in plants and that this activity is involved in leaf patterning. Interestingly, our study also supports the idea that FIL can act as a repressor, as transcriptomic analysis identified negatively regulated FIL-response genes. To reconcile these observations, we propose that YABs are bifunctional transcription factors that participate in both positive and negative regulation. These findings fit a model of leaf development in which adaxial/abaxial patterning is maintained by a regulatory network consisting of positive feedback loops.
  • Item
    Thumbnail Image
    In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos
    Simpson, DA ; Thompson, AJ ; Kowarsky, M ; Zeeshan, NF ; Barson, MSJ ; Hall, LT ; Yan, Y ; Kaufmann, S ; Johnson, BC ; Ohshima, T ; Caruso, F ; Scholten, RE ; Saint, RB ; Murray, MJ ; Hollenberg, LCL (OPTICAL SOC AMER, 2014-04-01)
    In this work, we incorporate and image individual fluorescent nanodiamonds in the powerful genetic model system Drosophila melanogaster. Fluorescence correlation spectroscopy and wide-field imaging techniques are applied to individual fluorescent nanodiamonds in blastoderm cells during stage 5 of development, up to a depth of 40 µm. The majority of nanodiamonds in the blastoderm cells during cellularization exhibit free diffusion with an average diffusion coefficient of (6 ± 3) × 10(-3) µm(2)/s, (mean ± SD). Driven motion in the blastoderm cells was also observed with an average velocity of 0.13 ± 0.10 µm/s (mean ± SD) µm/s and an average applied force of 0.07 ± 0.05 pN (mean ± SD). Nanodiamonds in the periplasm between the nuclei and yolk were also found to undergo free diffusion with a significantly larger diffusion coefficient of (63 ± 35) × 10(-3) µm(2)/s (mean ± SD). Driven motion in this region exhibited similar average velocities and applied forces compared to the blastoderm cells indicating the transport dynamics in the two cytoplasmic regions are analogous.
  • Item
    No Preview Available
    JNK signaling is needed to tolerate chromosomal instability
    Wong, HW-S ; Shaukat, Z ; Wang, J ; Saint, R ; Gregory, SL (LANDES BIOSCIENCE, 2014-02-15)
    Chromosomal instability (CIN), as a common feature of tumors, represents a potential therapeutic target if ways can be found to specifically cause apoptosis in unstably dividing cells. We have previously shown that if signaling through the JNK pathway is reduced, apoptosis is triggered in models of chromosomal instability induced by loss of the spindle checkpoint. Here we identify components upstream and downstream of JNK that are able to mediate this effect, and test the involvement of p53 and DNA damage in causing apoptosis when JNK signaling is reduced in CIN cells. We show that cell cycle progression timing has a strong effect on the apoptosis seen when JNK signaling is reduced in genetically unstable cells: a shortened G 2 phase enhances the apoptosis, while lengthening G 2 rescues the JNK-deficient CIN cell death phenotype. Our findings suggest that chromosomal instability represents a significant stress to dividing cells, and that without JNK signaling, cells undergo apoptosis because they lack a timely and effective response to DNA damage.
  • Item
    Thumbnail Image
    Inconsistent effects of developmental temperature acclimation on low-temperature performance and metabolism in Drosophila melanogaster
    Kristensen, TN ; Overgaard, J ; Hoffmann, AA ; Nielsen, NC ; Malmendal, A (EVOLUTIONARY ECOLOGY LTD, 2012)
  • Item
    Thumbnail Image
    Identification and disruption of the gene encoding the third member of the low-molecular-mass rhoptry complex in Plasmodium falciparum
    BALDI, D. L. B. ; GOOD, R. T. G. ; DURAISINGH, M. T. ; CRABB, B. S. C. ; COWMAN, A. F. C. ( 2002)