Show simple item record

dc.contributor.authorWang, L
dc.contributor.authorGeng, X
dc.contributor.authorBezdek, J
dc.contributor.authorLeckie, C
dc.contributor.authorRamamohanarao, K
dc.date.available2014-05-21T22:49:19Z
dc.date.issued2010-10-01
dc.identifierhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000281000500005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=d4d813f4571fa7d6246bdc0dfeca3a1c
dc.identifier.citationWang, L., Geng, X., Bezdek, J., Leckie, C. & Ramamohanarao, K. (2010). Enhanced Visual Analysis for Cluster Tendency Assessment and Data Partitioning. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 22 (10), pp.1401-1414. https://doi.org/10.1109/TKDE.2009.192.
dc.identifier.issn1041-4347
dc.identifier.urihttp://hdl.handle.net/11343/29276
dc.languageEnglish
dc.publisherIEEE COMPUTER SOC
dc.subjectArtificial Intelligence and Image Processing
dc.titleEnhanced Visual Analysis for Cluster Tendency Assessment and Data Partitioning
dc.typeJournal Article
dc.identifier.doi10.1109/TKDE.2009.192
melbourne.peerreviewPeer Reviewed
melbourne.affiliationThe University of Melbourne
melbourne.affiliation.departmentComputer Science and Software Engineering
melbourne.source.titleIEEE Transactions on Knowledge and Data Engineering
melbourne.source.volume22
melbourne.source.issue10
melbourne.source.pages1401-1414
dc.description.pagestart1401
melbourne.publicationid146979
melbourne.elementsid324056
melbourne.contributor.authorBezdek, James
melbourne.contributor.authorLeckie, Christopher
melbourne.contributor.authorKotagiri, Ramamohanarao
melbourne.internal.ingestnoteAbstract bulk upload (2017-07-20)
dc.identifier.eissn1558-2191
melbourne.accessrightsThis item is currently not available from this repository


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record