Show simple item record

dc.contributor.authorKoffi, E. N.en_US
dc.contributor.authorRayner, P. J.en_US
dc.contributor.authorScholze, M.en_US
dc.contributor.authorBeer, C.en_US
dc.date.accessioned2014-05-22T06:59:21Z
dc.date.available2014-05-22T06:59:21Z
dc.date.issued2012en_US
dc.identifier.citationKoffi, E. N., Rayner, P. J., Scholze, M. & Beer, C. (2012). Atmospheric constraints on gross primary productivity and net ecosystem productivity: results from a carbon-cycle data assimilation system. Global Biogeochemical Cycles, 26, doi:10.1029/2010GB003900.en_US
dc.identifier.issn1944–9224en_US
dc.identifier.urihttp://hdl.handle.net/11343/32760
dc.description© 2012 American Geophysical Unionen_US
dc.description.abstractThis paper combines an atmospheric transport model and a terrestrial ecosystem model to estimate gross primary productivity (GPP) and net ecosystem productivity (NEP) of the land biosphere. Using atmospheric CO2 observations in a Carbon Cycle Data Assimilation System (CCDAS) we estimate a terrestrial global GPP of 146 ± 19 GtC/yr. However, the current observing network cannot distinguish this best estimate from a different assimilation experiment yielding a terrestrial global GPP of 117 GtC/yr. Spatial estimates of GPP agree with data-driven estimates in the extratropics but are overestimated in the poorly observed tropics. The uncertainty analysis of previous studies was extended by using two atmospheric transport models and different CO2 observing networks. We find that estimates of GPP and NEP are less sensitive to these choices than the form of the prior probability for model parameters. NEP is also found to be significantly sensitive to the transport model and this sensitivity is not greatly reduced compared to direct atmospheric transport inversions, which optimize NEP directly.en_US
dc.languageengen_US
dc.publisherAmerican Geophysical Unionen_US
dc.subjectcarbon cycleen_US
dc.subjectcarbon data assimilation systemen_US
dc.subjectgross primary productivityen_US
dc.subjectnet ecosystem productivityen_US
dc.titleAtmospheric constraints on gross primary productivity and net ecosystem productivity: results from a carbon-cycle data assimilation systemen_US
dc.typeJournal Articleen_US
melbourne.peerreviewPeer Revieweden_US
melbourne.affiliationThe University of Melbourneen_US
melbourne.affiliation.departmentScience - Earth Sciencesen_US
melbourne.publication.statusPublisheden_US
melbourne.source.titleGlobal Biogeochemical Cyclesen_US
melbourne.source.volume26en_US
melbourne.elementsidNA
melbourne.contributor.authorRayner, Peter
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record