Uteroplacental Insufficiency and Lactational Environment Separately Influence Arterial Stiffness and Vascular Function in Adult Male Rats
Author
Tare, M; Parkington, HC; Bubb, KJ; Wlodek, MEDate
2012-08-01Source Title
HYPERTENSIONPublisher
LIPPINCOTT WILLIAMS & WILKINSUniversity of Melbourne Author/s
Wlodek, MaryAffiliation
PhysiologyMetadata
Show full item recordDocument Type
Journal ArticleCitations
Tare, M., Parkington, H. C., Bubb, K. J. & Wlodek, M. E. (2012). Uteroplacental Insufficiency and Lactational Environment Separately Influence Arterial Stiffness and Vascular Function in Adult Male Rats. HYPERTENSION, 60 (2), pp.378-+. https://doi.org/10.1161/HYPERTENSIONAHA.112.190876.Access Status
This item is currently not available from this repositoryDescription
C1 - Journal Articles Refereed
Abstract
Early life environmental influences can have lifelong consequences for health, including the risk of cardiovascular disease. Uteroplacental insufficiency causes fetal undernutrition and impairs fetal growth. Previously we have shown that uteroplacental insufficiency is associated with impaired maternal mammary development, compromising postnatal growth leading to hypertension in male rat offspring. In this study we investigated the roles of prenatal and postnatal nutritional environments on endothelial and smooth muscle reactivity and passive wall stiffness of resistance arteries of male rat offspring. Fetal growth restriction was induced by maternal bilateral uterine vessel ligation (restricted) on day 18 of pregnancy. Control offspring were from mothers that had sham surgery (control) and another group from mothers with their litter size reduced (reduced; litter size reduced to 5 at birth, equivalent to the restricted group). On postnatal day 1, offspring (control, restricted, and reduced) were cross-fostered onto control or restricted mothers. At 6 months, mesenteric and femoral arteries were studied using wire and pressure myography. In restricted-on-restricted rats, wall stiffness was increased, and sensitivity to phenylephrine and relaxation evoked by endothelium-derived hyperpolarizing factor and sodium nitroprusside were impaired in mesenteric arteries. In femoral arteries, relaxation to sodium nitroprusside was reduced, whereas wall stiffness was unaltered. Cross-fostering restricted offspring onto control mothers alleviated deficits in vascular stiffness and reactivity. Control or reduced offspring who suckled a restricted mother had marked vascular stiffening. In conclusion, prenatal and early postnatal environments separately influence vascular function and stiffness. Furthermore, the early postnatal lactational environment is a determinant of later cardiovascular function.
Keywords
Foetal Development and Medicine; Reproductive System and DisordersExport Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References
Collections
- Minerva Elements Records [52443]
- Physiology - Research Publications [393]