University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Science
  • School of Mathematics and Statistics
  • School of Mathematics and Statistics - Theses
  • View Item
  • Minerva Access
  • Science
  • School of Mathematics and Statistics
  • School of Mathematics and Statistics - Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    A diagrammatic approach to factorizing F-matrices in XXZ and XXX spin chains

    Thumbnail
    Download
    A diagrammatic approach to factorizing F-matrices in XXZ and XXX spin chains (3.897Mb)

    Citations
    Altmetric
    Author
    McAteer, Stephen Gerard
    Date
    2015
    Affiliation
    Mathematics and Statistics
    Metadata
    Show full item record
    Document Type
    PhD thesis
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/58978
    Description

    © 2015 Dr. Stephen Gerard McAteer

    Abstract
    The aim of this thesis is a better understanding of certain mathematical structures which arise in integrable spin chains. Specifically, we are concerned with XXZ and XXX Heisenberg spin-1/2 chains and their generalizations. The mathematical structures in question are the F-matrix (a symmetrising, change-of-basis operator) and the Bethe eigenvectors (the eigenvectors of the transfer matrix of integrable spin chains). A diagrammatic tensor notation represents these operators in a way which is intuitive and allows easy manipulation of the relations involving them. The sun F-matrix is a representation of a Drinfel’d twist of the R-matrix of the quantum algebra U_q(su_n) and its associated Yangian Y(su_n). The F-matrices of these algebras have proven useful in the calculation of scalar products and domain wall partition functions in the spin-1/2 XXZ model. In this thesis we present a factorized diagrammatic expression for the su_2 F-matrix equivalent to the algebraic expression of Maillet and Sanchez de Santos. Next we present a fully factorized expression for the su_n F-matrix which is of a similar form to that of Maillet and Sanchez de Santos [18] for the su_2 F-matrix and equivalent to the unfactorized expression of Albert, Boos, Flume and Ruhlig [2] for the su_n F-matrix. Using a diagrammatic description of the nested algebraic Bethe Ansatz, we present an expression for the eigenvectors of the sun transfer matrix as components of appropriately selected sun F-matrices. Finally, we present expressions for the sun elementary matrices (and therefore the local spin operators in the case of su_2) in terms of components of the sun monodromy matrix.
    Keywords
    mathematical physics; F-matrix; Drinfel'd twist; quantum spin chains; Bethe Ansatz

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • School of Mathematics and Statistics - Theses [156]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors