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abstract

PURPOSEAndrogen receptor (AR) signaling is important in prostate cancer progression, and therapies that target
this pathway have been the mainstay of treatment for advanced disease for over 70 years. Tumors eventually
progress despite castration through a number of well-characterized mechanisms; however, little is known about
what determines the magnitude of response to short-term pathway inhibition.

METHODS We evaluated a novel combination of AR-targeting therapies (degarelix, abiraterone, and bicaluta-
mide) and noted that the objective patient response to therapy was highly variable. To investigate what was
driving treatment resistance in poorly responding patients, as a secondary outcome we comprehensively
characterized pre- and post-treatment samples using both whole-genome and RNA sequencing.

RESULTS We find that resistance following short-term treatment differs molecularly from typical progressive
castration-resistant disease, associated with transcriptional reprogramming, to a transitional epithelial-to-
mesenchymal transition (EMT) phenotype rather than an upregulation of AR signaling. Unexpectedly, toler-
ance to therapy appears to be the default state, with treatment response correlating with the prevalence of tumor
cells deficient for SNAI2, a key regulator of EMT reprogramming.

CONCLUSIONWe show that EMT characterizes acutely resistant prostate tumors and that deletion of SNAI2, a key
transcriptional regulator of EMT, correlates with clinical response.
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BACKGROUND

Prostate cancer is critically dependent on activation of
the androgen receptor (AR), a ligand-activated tran-
scription factor, for cancer cell growth and survival. As
such, interference with AR activation by suppression of
ligand synthesis (androgen deprivation therapy [ADT])
or direct receptor inhibition has been the backbone of
treatment of advanced disease for many years.1 The
majority of patients demonstrate a biochemical response
as measured by a fall in serum prostate-specific antigen
(PSA); however, the magnitude and duration of re-
sponse are highly variable, with some patients pro-
gressing rapidly to castration resistance, whereas
others experiencing prolonged periods of stable
disease.2 Although the molecular mechanisms that
drive progressive castration-resistant disease (castration-
resistant prostate cancer [CRPC]) are reasonably well-
characterized,3-11 what determines tumor cell survival in
response to pathway inhibition in the short term is
unknown. This is a significant knowledge gap in one of
the world’s most common cancers and an ongoing
impediment to the development of predictive bio-
markers as well as more effective treatment strategies.

To investigate this, we performed a phase II neo-
adjuvant study of profound androgen deprivation and
receptor blockade (degarelix, abiraterone, and bica-
lutamide) for 6 months prior to prostatectomy in pa-
tients with prostate cancer with a high risk of disease
recurrence and conducted an in-depth analysis of pre-
and post-treatment specimens to identify molecular
determinants of response to acute pathway inhibition
as a secondary outcome.

METHODS

Clinical Trial

We performed an open-label nonrandomized neo-
adjuvant phase II study (ACTRN12612000772842) in
men with prostate cancer with high-risk features
(PSA . 20 ng/dL, predominant cancer Gleason pattern
4 or above, or clinical stage ≥ cT2c) with no evidence of
bony metastatic disease (Data Supplement). Patients
received degarelix 240/80 mg subcutaneously every
4 weeks, abiraterone acetate 500 mg orally daily titrating
upward every 2 weeks by 250 mg to a final dose of
1,000 mg daily, bicalutamide 50 mg orally daily, and
prednisolone 5 mg orally twice daily. Treatment was for
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24 weeks (six cycles), and oral medications were continued
up until the day of surgery. Sample size was calculated on the
basis of an anticipated complete pathologic response
(complete response [CR]) rate and used Simon’s12 two-stage
phase II trial design. On the basis of a historical CR rate of
approximately 5% with conventional castration and the as-
sumption that a CR rate of 25%would be of clinical interest for
examination in a larger phase III trial setting, amaximumof 17
patients needed to be accrued to have 80% power to detect a
significant difference at α = .05 level. From the initial nine
patients, at least one observed CR was necessary to trigger
recruitment to the second stage, with at least three CRs in the
final cohort required to reject the null hypothesis. All study
investigations had institutional review board approval.

All patients provided written informed consent before en-
rollment. All study interventions and investigations were
approved by the Human Research Ethics Committee at
Melbourne Health (HREC 2012.220).

Fresh Tissue Banking

Frozen section confirmed fresh tumor and benign tissue
were collected at the time of prostatectomy as previously
described.13

Pathologic Assessment

Specimens were routinely fixed and processed and tumor
volume calculated as previously described.14 CR was de-
fined as no identifiable residual tumor (ypT0). No response
was defined as absence of histologic evidence of tumor
involution. Partial response was defined as identifiable
residual tumor with variable histologic evidence of tumor
involution. Although not prespecified in the study Protocol,
for consistency with recent reports, minimal residual dis-
ease was defined as a residual tumor volume≤ 0.2 cc15 with
no high-grade elements present (Gleason score ≤ 3 + 3).
Tumor volumes were not corrected for cellularity.

Experimental Methods

A detailed description of the experimental procedures used
is provided in the Data Supplement.

RESULTS

Objective Responses to Profound AR Inhibitors Are Highly

Variable and Not Associated With Established

CRPC Drivers

Seventeen patients were enrolled and completed neo-
adjuvant treatment, with one patient declining to proceed
with prostatectomy. Despite all patients demonstrating a
decrease in serum PSA . 95% (Data Supplement), ob-
jective pathologic responses were highly variable (Figs 1A
and 1B). Four of 16 evaluable patients treated had sensitive
cancers, with no remaining tumor (n = 1) or minimal re-
sidual disease (n = 3) identified in the prostatectomy
specimen. In contrast, an identical number of patients had
no measurable treatment effect observed. The remaining
patients (n = 8) had partial tumor responses, with signifi-
cant volumes of residual tumor but histologic evidence of at
least some tumor regression. Heterogeneity in tumor re-
sponse could not be explained by differences in the pre-
treatment disease characteristics of the patient groups
(Data Supplement), and there was no correlation between
PSA nadir and residual tumor volume (Data Supplement).
The risk of disease recurrence, however, was closely linked
to the extent of tumor regression (Data Supplement).

Reactivation of AR signaling has been demonstrated to be
an important driver of progressive castration-resistant
disease.1 We therefore assessed AR expression in pre-
and post-treatment samples by immunohistochemistry and
found it to be detectable and localized to the nucleus in the
majority of persistent tumors, suggestive of ongoing acti-
vation (Fig 1C), although there was no difference in re-
ceptor staining or localization based on the level of
treatment response (Fig 1D). A number of different
mechanisms have been shown to reactivate AR signaling in
castration-resistant disease. These include overexpression
of the AR (frequently associated with AR amplification),3

which confers supersensitivity to subcastrate signaling
androgen levels, the emergence of constitutively active
receptor splice variants (in particular ARv7)5, mutations in

CONTEXT

Key Objective
To investigate determinants of sensitivity to 6 months of neoadjuvant androgen receptor signaling inhibition in patients with

high-risk prostate cancer.
Knowledge Generated
Treatment response is highly variable, with residual tumor characterized by transcriptional reprogramming to an intermediate

epithelial-to-mesenchymal transition (EMT) state. Somatic loss of SNAI2, a key regulator of EMT, correlates with tumor response,
suggesting that the inability of tumor cells to implement reprogramming is an important determinant of treatment sensitivity.

Relevance
These findings suggest that SNAI2 loss may be a useful biomarker in predicting response to androgen receptor signaling

inhibitors and strategies targeting EMT may boost treatment efficacy.
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the ligand-binding domain that permit promiscuous ligand
binding, and an increase in intratumoral androgen
synthesis.16 In addition, the presence of ARv7 in pre-
treatment samples has been reported to predict response to
newer hormonal therapies such as abiraterone.17 However,
we found no significant levels of signaling androgens in

persistent tumors (Fig 1E), nor did we find an increase in
the expression of the AR or its splice variants (Fig 1F and
Data Supplement) or any mutations in AR coding regions,
indicating that the mechanisms regulating castration per-
sistence are distinct from those involved in castration re-
sistance. In addition, ARv7 expression in pretreatment
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FIG 1. Common molecular drivers of breakthrough castration resistance are not detectable in persistent tumors. (A) Total tumor volume in patients
treated with combination of profound androgen suppression and receptor blockade (termed NAT, n = 16) compared with a historical untreated cohort
with similar pretreatment characteristics (termed HR, n = 101). The solid bar represents tumor volume median. Patient with a complete pathologic
response is represented with an X. (B) Whole-mount section map of prostate from a patient with NR (upper panel) and CR (bottom panel). Tumor is
marked in orange, with areas of extraprostatic extension highlighted in yellow. Red marks a positive margin. (C) Immunohistochemical staining for AR in
nonresponder indicating nuclear staining. Bar equals 200 μm. Summary of AR location in before and after treatment specimens. (D) Patient-level data of
mean optical density of quantitative digital analyses of AR staining categorized by treatment response. (E) Mean (+ SEM) concentration of signaling
androgens in NAT prostate tissue (n = 12) as determined by high-performance liquid chromatography and tandemmass spectrometry with comparison
with an untreated HR cohort (n = 10). (F) Sashimi plots for AR-FL and AR-V7 transcripts created using MISO. Exon regions for AR full length and AR-V7
are depicted graphically at the bottom, with a pileup of RNA-seq RPKMmapping to each exon in six NAT patients (orange tracks). The number of reads
that span each exon boundary is shown. Comparison is made with a positive control (red track) with known AR-V7 upregulation. In all cases of residual
tumor, the ratio of AR-V7 to full-length receptor expression was, 1%. A4, androstenedione; AR, androgen receptor; AR-FL, androgen receptor full length;
AR-V7, androgen receptor splice variant 7; BX, biopsy; CR, complete response; Cyto, cytoplasmic; DHEA, dehydroepiandrosterone; DHT, dihy-
drotestosterone; FC, fold change; FL, full length;HR, high risk;MRD,minimal residual disease;MISO,mixture of isoforms; NAT, neoadjuvant therapy; NR,
no response; Nuc, nuclear; PR, partial response; RPKM, reads per kilobase million; T, testosterone; TX, post treatment.
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FIG 2. Tumor persistence is associated with global transcriptional reprogramming and phenotype switching. (A) Principal component analysis of global
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biopsy specimens was negligible compared with the full
length receptor and did not predict treatment response
(Data Supplement).

Tumor Cells Surviving Acute Pathway Inhibition

Demonstrate an Incomplete Epithelial-to-Mesenchymal

Transition Phenotype

Accumulating evidence suggests that transcriptional
reprogramming is a key event in acute resistance to therapy
in tumor cells, usually associated with the emergence of a
therapy-resistant phenotype.18-22 To probe this, we profiled
global transcription in fresh-frozen residual tumors by RNA
sequencing and observed clear differences in the tran-
scriptional profile of resistant tumors compared with
matched fresh-frozen untreated samples (Fig 2A; PC1 and
PC2 capture 29.87% and 18.63% of the variance, re-
spectively). Enrichment analysis revealed significant upre-
gulation of gene sets associated with phenotype change,
including stem-like and epithelial-to-mesenchymal transi-
tion (EMT), as well as genes regulated by chromatin
modification (Fig 2B). Androgen-regulated genes were
significantly downregulated, despite the presence and nu-
clear location of AR in persistent tumors, as were gene sets
associated with cell proliferation (Fig 2B). We then inter-
rogated the expression of key differentiation and regulatory
genes in a number of complementary RNA-seq experiments
(Fig 2C and Data Supplement) and found consistent
upregulation of both markers of EMT and stemness in re-
sistant tumor tissue. For EMT markers, similar levels of
expression were observed in treated benign glands, but
not in progressive castration-resistant samples, suggest-
ing that this adaptive response is enriched in prostate
epithelium surviving short-term AR pathway inhibition,
although the number of CRPC samples analyzed is small.
In contrast, upregulation of stem cell markers was ob-
served in both disease states and in treated benign
samples. To confirm that EMT was occurring, we mea-
sured the levels of the epithelial differentiation marker
E-cadherin, loss of which is a key defining feature of EMT,
and found consistent loss of expression in persistent tu-
mors (Fig 2D). However, significant variability in the level
of expression within individual cells was observed. Similar
levels of E-cadherin downregulation were also identified in

persistent luminal cells within benign glands (Data Sup-
plement), which also expressed predominantly nuclear
AR (Data Supplement), confirming that the adaptive re-
sponse that permits epithelial survival is not cancer
cell–specific. Despite high staining for the key mesen-
chymal marker vimentin in the stroma of persistent tu-
mors, we observed no instance of epithelial staining,
indicating that resistant tumors are in an intermediate
EMT state (Data Supplement).23

Lack of Clonal Change in Nonresponders Suggests

Intrinsic Resistance

To investigate if this cell plasticity was related to the
emergence of new driver lesions at the DNA level, we
performed whole-genome sequencing calling single-
nucleotide variants (SNVs), somatic copy number aber-
rations (SCNAs), and structural variants on paired pre- and
post-treatment tumor samples (Figs 3A and 3B; Data
Supplement). Successful sequencing was obtained from all
residual tumors (n = 15, as one patient had no residual
tumor), but only from 7 of 16 diagnostic specimens be-
cause of limited tumor tissue input and formalin-fixed
paraffin-embedded (FFPE) induced DNA degradation.
ETS fusions were identified in 5 of 15 patients, with the
remaining patients falling into the Other category in The
Cancer Genome Atlas.24 Although we did observe en-
richment of specific genomic drivers with treatment in
individual patients (for example, an RB1 loss of hetero-
zygosity event in NAT02), there was no consistent asso-
ciation between known drivers and tumor response, and in
general, post-treatment samples had fewer detected so-
matic aberrations. Given that one potential mechanism of
drug resistance is the clonal expansion of a distinct cell
population intrinsically resistant to ADT,25 we performed
clonal analysis with the PyClone algorithm26 using SNV and
SCNA data across longitudinal patient samples (Figs 3C
and 3D). We also performed an orthogonal clonal analysis
by comparing SCNA segments in sample pairs. Of the
seven patients with paired pre- and post-treatment WGS
data, clonality was resolvable in four. To test for potential
SNV artifacts in the FFPE samples, which may affect clonal
analysis, we compared base pair transitions at different
allele frequencies betweenmatched fresh-frozen and FFPE

FIG 3. Persistence is not driven by somatic features or the evolution of a resistant clone. (A) Summary of somatic changes identified in NAT samples. Tumors
are classified according to the molecular subtype present in any one sample from a patient. Subclonal indicates. 0.1 and, 0.9 copy number fraction from
Battenberg.57 Subclonal copy number losses at, 0.1 CCF were only considered if the SCNAwas present at. 0.1 in at least one other sample from the patient.
Only losses were considered; no amplifications (. 4 allelic copies) affecting target genes were found. Samples with unclear purity and/or ploidy solutions were
not considered for copy number losses. (B) Summary of SCNAs, SNVs, and SVs of samples. SCNAs are not displayed for samples with unclear purity and/or
ploidy solutions. Subclonal SCNAs were considered as present at, 0.9 copy number fraction from Battenberg. (C) Schematic comparing CCFs in longitudinal
samples, showing direction of clonal change. (D) Copy number fractions of segments at the same genomic location for pretreatment (BX) and post-treatment
(TX [FFPE tissue] or RARP [fresh tissue]) samples from patients demonstrating varying levels of treatment response includingNR, PR, and almost CR. The cyan
lines indicate the 2D density distribution of the data. BX, biopsy (before treatment); CCF, cancer cell fraction; CR, complete response; DEL, deletion; DUP,
duplication; FFPE, formalin-fixed paraffin-embedded; INRTX, inter-chromosomal translocation; INTDUP, interspersed duplication; INV, inversion; LOH, loss of
heterozygosity; NA, not available; NAT, neoadjuvant therapy; NR, no response; PR, partial response; RARP, robot assisted radical prostatectomy; SCNA,
somatic copy number aberration; SNV, singlenucleotide variant; SV, structural variant; TX, after treatment.
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FIG 4. SNAI2 loss correlates with tumor response. (A) Venn diagram summarizing overlapping gene deletions identified subclonally in pretreatment
samples but not in post-treatment specimens. (B) Prioritization of overlapping genes from (A) on the basis of level of expression in FF NAT versus HR
RNA-seq data set. (C) Relative logfold change in SNAI2 transcript measured by RNA-seq in various ADT-treated (continued on following page)
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samples. We observed no significant C.T/G.A enrich-
ment in the 1%-10% or 10%-25% VAF ranges (P = .3352
and P = .7985, respectively, using a one-sided paired t test;
Data Supplement). In the majority of patients, although
evidence of subclones was identified in both pre- and post-
treatment specimens, no significant changes in clonal
makeup were identified in resistant tumors in patients
NAT09 and NAT03 (Figs 3Di-3Diii and Data Supplement).
NAT13 (partial responder) showed some evidence of a
shrinking clone in the SCNA data (Data Supplement);
however, this was not supported in the SNV analysis. In
particular, no new genomic drivers were observed, indi-
cating that tumor cell populations present before treatment
were intrinsically resistant to ADT or had the intrinsic ability
to adapt to the castrate state. In contrast, in one patient who
demonstrated an almost complete pathologic response, we
identified significant changes in the subclonal makeup,
with evidence for the enrichment of a treatment-resistant
subclone in both the SNV and SCNA data (Fig 3Div and
Data Supplement).

Pretreatment SNAI2 Copy Number Status Correlates With

Tumor Response

Given that SCNA events are more important in driving lo-
calized prostate cancer progression than SNVs and that
copy number loss is more frequently observed than copy
number gain,24 we reasoned that a copy number loss event
would be the most likely somatic aberration defining
treatment sensitivity. We therefore performed an overlap
analysis of copy number loss events present subclonally in
pretreatment specimens but not detectable in residual
persistent tumors, focusing on the three patients with the
best response (NAT2, NAT3, and NAT12) for whom paired
pre- and post-treatment WGS data were available, identi-
fying 45 candidate genes (Fig 4A). We reasoned that if loss
of expression was important for treatment sensitivity, then
overexpression might drive treatment resistance. We
checked the expression levels of these 45 genes in
matching RNA-seq data and found that only two were
significantly overexpressed (logfold change . 1;
FDR , 0.05) at reasonable transcript abundance (log
counts per million . 3) (Fig 4B) and had consistent ex-
pression across the different RNA-seq data sets (Fig 4C).
Unexpectedly, one of the prioritized genes was SNAI2,
which encodes the transcription factor Slug, a key regulator

of EMT that directly represses E-cadherin expression27 and
is expressed in residual tumor epithelium (n = 13) (Fig 4D
and Data Supplement). Using fluorescent in situ hybrid-
ization (FISH) to directly measure gene copy number at the
cellular level (Fig 4E), we confirmed that treatment with
profound ADT resulted in the loss of cells deficient for
SNAI2 (Figs 4F and 4G) and that the prevalence of SNAI2-
deficient cells in pretreatment biopsy specimens correlated
with tumor response (Fig 4H).

DISCUSSION

We performed a phase II study of a novel combination of
AR-targeting agents in patients with clinically localized
prostate cancer at high risk of disease recurrence and,
despite biochemical responses in all patients, observed
significant variability in measured tumor response. Similar
to previous studies of intense AR signaling inhibition,15,28-30

we found 25% of patients demonstrated complete re-
sponse or near CR, with the remainder displaying either
partial tumor regression or no histologic evidence of re-
sponse. Despite AR being present and nuclear in the
majority of patients with residual disease as previously
observed,15,28 we did not identify a significant contribution
of known AR-driven mechanisms, a key feature of pro-
gressive CRPC, to acute tumor persistence. In fact, tran-
scriptional profiling indicated that AR signaling was
significantly suppressed in residual tumors, consistent with
previous findings.31

How treatment resistance emerges under the selective
pressure of systemic therapy is a topic of intense
speculation.32 Certainly, current evidence suggests that
selection of subclones harboring genomic variants offering
a pro-survival advantage is the predominant mechanism of
prostate cancer persistence following intense AR signaling
inhibition. For instance, in a whole-exome sequencing
analysis of one or more tumor foci from 18 patients fol-
lowing 24 weeks of neoadjuvant leuprolide and abiraterone,
Sowalsky et al31 identified enrichment of RB1 loss in re-
sidual disease. Similarly, McKay et al29 recently reported an
association between residual tumor volume and PTEN
aberrations and ERG expression. Although we also ob-
served enrichment for a small number of known drivers
between pre- and post-treatment specimens, particularly at
the subclonal level, we observed no consistent pattern
across patients. However, given the well-recognized

FIG 4. (Continued). specimens compared with untreated controls. (D) Representative images (high power) of Slug immunohistochemical staining in
residual tumors. Arrowheads indicate residual tumor foci. (E) Indicative fluorescent in situ hybridization images (magnification ×100) of tumor samples
following hybridization with probes against SNAI2 (red) and Ch8 centromere (green). (F) Mean6 standard deviation of percentage of cells with (i) deep
deletion or (ii) ≥ 2 copies of SNAI2 in before and after treatment specimens. (G) Representative images of changes in the prevalence of cells harboring
deep deletions of SNAI2 in pre- and post-treatment specimens in patients with MRD (NAT16) and NR (NAT11). (H) Scatter plots (i-iii) demonstrating the
relationship between the prevalence of cells with the indicated SNAI2 copy number state and residual tumor volume. ADT, androgen deprivation therapy;
BX, biopsy (before treatment); CCR, cancer cell fraction; CPM, counts per million; DAPI, 4’,6-diamidino-2-phenylindole; FDR, false discovery rate; FF,
fresh-frozen; FFPE, formalin-fixed paraffin-embedded; HR, high-risk; IHC, immunohistochemistry; LFC, logfold change; MRD, minimal residual disease;
NAT, neoadjuvant therapy; noDHT, nontrial patients treated with ADT; NR, no response; PR, partial response; TX, after treatment.
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heterogeneity of localized prostate cancer,33 we interpret
these results with caution.

An alternative explanation is that responding tumors
harbor a high proportion of cells before treatment that are
fatally sensitive to AR signaling inhibition. By analyzing
pre- and post-treatment specimens, we found that re-
sistance to short-term AR signaling inhibition is charac-
terized by an adaptive drug-tolerant persister intermediate
EMT state in residual tumor cells that echoes the phe-
notype changes described in vitro in diverse cell types,18

including human-derived prostate cancer cells.34,35 We
observed that this phenotype switching is shared by be-
nign prostate epithelium, suggesting that it is a default
survival program under the hostile conditions of AR sig-
naling inhibition, and by integrating data on genomic
variants selectively lost with treatment with upregulated
transcripts in residual malignant and benign glands
identified SNAI2 as a likely key regulator of this survival
switch. In particular, we hypothesize that SNAI2 defi-
ciency in pretreatment tumor cells render them suscep-
tible to cell death induced by AR signaling inhibition.
Certainly, this concept would be consistent with recent
observations regarding the importance of persistent lu-
minal cells in the regeneration of the mouse prostate after
castration-induced involution.36

Snai2 (previously known as Slug) is a prototypical EMT
transcription factor that in addition to directly repressing
E-cadherin expression has increasingly defined roles in
stem cell maintenance, lineage commitment, and resis-
tance to apoptosis.37 Overexpression of Snai2 is associated
with a poor prognosis in multiple tumor types38-41 and
specifically in metastatic prostate cancer cell lines has been
shown to promote proliferation and invasiveness.42,43 Im-
portantly, Snai2 expression protects tumors cells from in-
duced cell death in response to a diverse array of therapies,
including cytotoxic chemotherapy,44,45 radiation,46,47 and
tyrosine kinase inhibitors.48,49 Within the prostate, Snai2
has been shown to be the key regulator of EMT in both
benign and malignant epithelium,50,51 and as we also ob-
served in multiple cohorts, expression is upregulated in
clinical prostate cancers acutely treated with androgen

deprivation,52 although this finding is not universal.53

Biallelic loss of SNAI2 is likely to interfere with this EMT
switch, preventing the emergence of ADT tolerance and
eventual to tumor cell demise.

Complete clonal loss of SNAI2 is uncommon in prostate
cancer, being reported in 0.6% of localized cases in The
Cancer Genome Atlas cohort.24 Similarly, in our analysis,
SNAI2 loss was only identified subclonally, and on FISH
analysis, biallelic loss was only observed in up to a maxi-
mum of 30% of cells, even in extreme responders.
Mechanisms other than genomic loss of the SNAI2 locus
may be relevant for hormone responsiveness as at least one
patient had a good partial tumor response despite having
only a very low level of single-copy loss or deep deletion of
SNAI2. For instance, SNAI2 expression is known to be
regulated by epigenetic modification54 and microRNAs,55

two mechanisms we have not explored in this study. It is
also likely that other EMT regulators are important (for
instance ZEB2, which is also consistently overexpressed
following AR signaling inhibition); however, on the basis of
our integrated analysis, we prioritized SNAI2 in this study.
In addition, given the small number of samples included in
the cohort, further validation in a larger cohort is required.

In conclusion, taken together, our data indicate that re-
sistance to short-term AR signaling inhibition in prostate
cancer is driven by molecular mechanisms that are distinct
from those underpinning progressive castration-resistant
outgrowth. Rather, tumor resistance is characterized by an
adaptive drug-tolerant persister intermediate EMT state that
is shared with benign prostate epithelium. These findings
support the role of Slug as a key transcriptional regulator of
these changes51 and are supported by animal models and
limited human explant studies.56 We show that adaptation
and survival appear to be the default state, with tumor
regression being associated with the selective depletion of
vulnerable cells defined by loss of SNAI2. These findings
indicate that SNAI2 has potential as a predictive biomarker
of response to AR-targeting drugs and that agents targeting
SNAI2 expression would be expected to augment thera-
peutic response.
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