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Internet of Things (IoT) is enabled by the latest developments in smart sensors, communication technologies, and Internet 
protocols with broad applications. Collecting data from IoT and generating information from these data become tedious tasks 
in real-life applications when missing data is encountered in datasets. It is of critical importance to deal with the missing 
data timely for intelligent decision making. Hence, this survey attempts to provide a structured and comprehensive overview 
of the research on the imputation of incomplete data in IoT. The paper starts by providing an overview of incomplete data 
based on the architecture of IoT. Then, it discusses the various strategies to handle the missing data, the assumptions used, 
the computing platform, and the issues related to them. The paper also explores the application of imputation in the area 
of IoT. We encourage researchers and data analysts to use known imputation techniques and discuss various issues and 
challenges. Finally, potential future directions regarding the method are suggested. We believe this survey will provide a 
better understanding of the research of incomplete data and serve as a guide for future research.

CCS Concepts: · Information systems → Data cleaning; Computing platforms; Data cleaning; · Computing method-

ologies → Machine learning approaches; · Networks → Network architectures;
Additional Key Words and Phrases: Imputation of Missing Data, Multiple Imputations, Machine Learning, Deep Learning, 
Computing Platform for Incomplete data, Internet of Things

1 INTRODUCTION

Industry and academia have directed their attention towards the Internet of Things (IoT), generating tremendous 
data by embedding billions of physical components to the Internet at an unprecedented rate. The Internet connects 
actuators and sensors enclosed in physical objects allowing them to see, think, hear, execute tasks together, 
share information, and coordinate decisions [5]. With the development of intelligent sensing devices and IoT 
in data generation and collection technology, various data are generated and collected from diferent sources, 
such as sensors, web, high deinition cameras, videos, and surveys, and are transmitted to their destinations. 
Given the multiple sensing devices in diferent situations, various types of data having diferent semantics, 
shape (space and time), and format lows in the system and gets collected [103]. Sensor systems are crucial in 
modern networked digital infrastructures, such as smart cities, environmental monitoring, industrial automation, 
autonomous vehicles, intelligent city, and building [44]. Multiple heterogeneous sensors are typically integrated 
to build a system where nearby sensing devices communicate and transfer data to cloud infrastructure for
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further analysis. All essential decisions on IoT services and applications rely on the available data generated/
collected prior to the decision. Such decision-making processes use predictive models relying upon the available
or observed data to increase the reliability, eiciency, proitability, and performance of IoT applications. This helps
to create business models, improves the business process, reduces risk and cost, and decision making through
data visualization [79]. However, regardless of the unquestionable beneits of IoT, numerous issues and challenges
need to be handled. Among them, unreliable outcomes generated by missing values is one of them. Missing data
or value is the absence of the data value in the variable of an observation. No matter how strictly the various
intelligent systems are designed to collect data from high-quality sensors or how hard investigators try to prevent
them, missingness occurs for various reasons in the IoT domain with respect to health, environmental, traic
monitoring, speciicially in a long duration screening, data collection and transmission failures, machine failure
(the failure or dysfunctioning of the sensors providing information), devices running out of battery or power,
boundary speciication problems (task of specifying inclusion rules for relations in a network study) [146], [2],
[68]. When incomplete data are not handled properly, they result in inaccurate and unreliable analysis during the
decision-making procedure.

1.1 Essence of Complete Data

Datasets are the source of appropriate information for diferent types of knowledge, such as classiication,
pattern, trend, and analysis [160]. However, given the missing values in certain datasets, such models break down,
preventing the generation of the required information for intelligent decision-making. The existence of missing
observations are frequently encountered in IoT research and studies such as biometric system [37], machine
translation [98], intelligent transportation systems [29], Internet of things [103], [44], big data [88], [152], sensor
network [162], environmental monitoring [2], Internet of medical things [143], [63], industrial database [43],
credit system [69], inance [105], safety [134], physical activity [136], cybersecurity [165], power system [149],
[67], and social network [66].
Genuine issues, including insuicient information, and broken data structure, arise when experts and re-

searchers need every piece of information from the data containing the missing data. Ignoring or failure in the
handling of missing data causes serious problems. The high risk of obtaining bias results due to the diference
between complete and missing data, complications in handling and analyzing the data, reduction in sample size,
loss of eiciency, the precision of conidence intervals are harmed, reduction of analytical power, and occurance
of misleading results when the researcher uses the missing data procedures without considering the assumptions
[76], [53], [115]. Most decision-making techniques use intelligent systems, including Machine Learning (ML) and
Deep Learning (DL), to analyze. All of these techniques require complete quality data for better estimation. Due
to the recurring nature of missing data even in a well-designed study and highly sensitive intelligent devices,
complete and quality data for intelligent analysis and decision making becomes a crucial unsolved component.

Handling incomplete data is particularly a tedious task, requiring prudent inspection to determine the mecha-
nism, pattern, and nature of the data. Approaches used frequently for analysis of incomplete data is imputation.
The imputation procedure is based on the basic principle of replacement or substitution [118]. The new reliable
data are imputed (reinserted) through the principled imputation techniques, which replace the missing value
indirectly. The observed data combine available information with statistical conditions to estimate the missing
mechanism and the population parameter.
In IoT applications, sensing devices are true sources of streaming big data, implying that the imputation

of incomplete data at the edge might be a powerful tool for dealing with the inevitable bottlenecks in data
communication. From the deluge of sensed raw data, the challenges lie in extracting valuable information. In
such a scenario, the objective would be to reduce the amount of sensor data transmission (processing and storage)
from the Edge network to the data centers.
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In comparison to other data-intensive systems, IoT sensor data have a propensity to transition from oline
data operations to near-real-time or real-time operations, making a quick illustration of raw data into quality
data an essential requirement. However, imputation of incomplete data is not only needed for industrial IoT and
medical IoT, but also in a variety of mission-critical sectors, including intelligent transportation, smart cities,
and several data processing functions. Because of this, several studies have been conducted to determine the
optimum way to divide data operation between the Edge system (sensor node) and the Cloud infrastructure. As a
result, paradigm-shifting from Cloud to Fog/Edge devices helps in reducing energy and computational processing
budgets.

1.2 Methodology

This section outlines the methodology that we tracked to accumulate state-of-the-art research to address the
imputation of missing data in IoT and computing platforms associated with it.
Research Scope: The main objective of this article is to overview, classify, and analyze approaches on the

imputation of the missing data and the associated computing platform. Hence, this survey paper aims to provide
solutions to the following research questions:

• RQ1: What are the sources of missing data in the IoT domain? How are they handled?
• RQ2: What are the computing platforms used in handling the missing data?
• RQ3: What are the challenges and issues related to imputation techniques in IoT, and what are the future
perspectives in handling missing data?

To answer the above-mentioned research questions, we extract essential information from multiple databases
such as Google Scholar, IEEE, ACM, Elsevier, and Springer databases until June 2021. From the deluge of literature
available in the databases that deal with the imputation of the missing data, 485 articles were selected based
on various keywords such as "Incomplete data in IoT," "Missing data in IoT," "Imputation of missing data," and
"Missing data." After rejecting the genetic algorithm and optimization-based techniques, 279 research articles
were selected that belong to the various applications of IoT. Out of 279, 111 articles were excluded because
methods or applications were repeated, and the method was not extended or used in other applications. Finally,
168 articles were selected based on the scope of this manuscript.

1.3 Related Work

Missing data have been the subject matter of several review articles, surveys, as well as books. A broad review of
handling missing data based on diferent topics in medical data is carried by [119]. Norazian et al. [99] presented a
review on imputation methods and software to handle missing data in time-series datasets. A survey on Multiple
Imputation (MI) approach has been presented by [40], [87], [53]. However, most of these surveys and reviews
were focused on the medical and survey data relying upon statistical methods. A review about the missing data
problems in pattern classiication based on intelligent techniques are presented in [47], [81], [102], [146], and
[114] . Apart from these, there exits various textbook that covers handling of the missing data [118], [76], [145],
[42], [71], [49].
Table 1 presents the set of imputation approaches, computing platform, and new perspectives on imputation

covered by our survey and the multiple related survey literature.

1.4 Our Contribution

This survey paper is focused on the imputation techniques implemented in various applications in IoT. Most
of the existing surveys on the imputation of missing data either concentrate on a single research domain or a
speciic application area. Compared with other systems, IoT requires real-time analysis and prediction in many
applications, including automation of the system, which helps in timely, eicient, and reliable decision making.

ACM Comput. Surv.



4 • Deepak et al.

Table 1. Comparison of the existing literature and our survey.
√
indicates topics covered in the literature.

[40] [87] [47] [81] [102] [15] [99] [146] [75] [111] This Survey

Imputation Approach

Deep Learning
√

Fuzzy Learning
√ √

Machine Learning
√ √ √ √ √ √ √ √

Statistical Approach
√ √ √ √ √ √ √ √ √ √ √

Hybrid Approach
√ √ √ √ √ √

Computing Platform

Cloud-based
√

Fog-based
√

Edge-based
√

Hybrid-based
√

New Perspectives
√

Applications
√

IoT deploys numerous sensors resulting in multiple types of data such as numerical, image, and binary, requiring
various approaches to handle the missing data. To address most of the datasets in IoT, this survey focuses on
"time-series-based" imputation and "pattern-based" imputation. Osman et al. [102] and Christian et al. [146]
are two works that group the imputation approach into multiple categories and discuss techniques under each
category. This survey extends these two previous works to address the gap in the literature by substantially
broadening the discussion in the domain of IoT and its application. We add two more categories of imputation
approaches, fuzzy learning, and deep learning. We not only discuss the strategies in each of the categories but also
determine the speciic assumptions about the nature of imputations made by the approach in that category. These
assumptions are crucial to determining whether the techniques in that category can impute missing values to
retain the original pattern or structure. We provide a basic imputation approach for each category, then interpret
how the various existing methods in that class are variants of the approaches in that group. Additionally, we
identify pros and cons for each imputation approach. We also discuss the computing platform that helps to impute
the missing data in real-time or oline domains. We also present a detailed discussion of the application domains
where imputation of the missing data has been used. We discuss diferent aspects of the imputation approach,
issues, and the challenges faced for each domain in IoT applications. This survey is dedicated to discussing various
strategies and ideas related to the imputation of incomplete data in the area of IoT. The major goals of this paper
are:

(1) We attempt to address the gap as presented in Table 1 by providing a structured and comprehensive overview
of extensive research on imputation strategies in IoT and its application. Similarly, it also discusses the
computing platform that helps imputation in real-time or oline domains. In addition, we highlight the
sources of missing data based on the architecture of IoT. More speciically, the beneits and drawbacks of
the imputation approaches are examined.

(2) We analyze critically and describe the presented state-of-the-art by conducting a thorough discussion. We
focus on the current challenges and constraints that come with developing and implementing imputation
algorithms in IoT.

(3) We discuss issues and emerging problems related to imputation and highlight new applications for imputa-
tion schemes to provide a guide for implementing imputation approaches for diferent types of data in IoT
systems.

(4) We suggest some future research directions to overcome the limitations of imputation techniques and
enhance the adoption of imputation techniques in the real-world context.

1.5 What’s the Next

In the following sections, we consider the background of the incomplete data in IoT. Strategies to handle the
incomplete data are provided in section 3. Techniques based on statistical methods are illustrated in section 4. In

ACM Comput. Surv.



A Comprehensive Survey on Imputation of Missing Data in Internet of Things • 5

section 5, intelligent imputation techniques such as machine learning-based imputation and deep learning-based
imputation are assessed. In section 6, we highlight various performance indicators. Section 7 multiple computing
platform to address the incomplete data are highlighted. In section 8, we highlight the applications of the IoT,
where imputation strategies have been applied. In the subsequent section, a discussion about the imputation
techniques in IoT is discussed in detail. Similarly, section 10 illustrates various research challenges, open issues,
and new perspectives to deal with imputations. Finally, concluding remarks are presented.

2 BACKGROUND OF MISSING DATA IN IOT

2.1 Nature of Input Data in IoT

One of the most important aspects of handling missing data in IoT is the nature of input data. IoT data pos-
sess various characteristics such as noisy, erroneous and uncertain, periodicity, correlation, continuous, and
voluminous, which shows information complexity due to multiple reasons like real-time processing, scalability,
technical constraints (battery power, sensor aging, computing power, storage), and heterogeneity. It requires
speciic strategies to deal with such issues and challenges. The data generated by IoT are time-series data, which
can be continuous, discrete, categorical, binary, mixed (numeric and categorical), etc. These data instances can
have relationships, e.g., spatial, graph, and sequential data. Spatial data are related to neighboring instances, i.e.,
data points are related in space. Sequence data contains the data points in the linear order, such as temporal
data (both continuous and discrete). Spatial data with temporal components are termed Spatio-temporal data.
Analytics of such data usually takes place in three classes: real-time, predictive, and descriptive, which require
complete data for analysis.

(a) (b) 
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Fig. 1. (a) A Schematics illustrating the architecture of IoT (b) The sources of incomplete data in each layer of IoT architecture

along with the functions.

2.2 IoT architecture and Missing Data

IoT architecture consists of sensing/ object layer, network layer, and application layer [5], [74]. The sensing/object
layer consists of various sensors that generate huge amounts of data, such as motion sensors, environmental
sensors. Missing data results from environmental issues, meteorological extremes, routine maintenance, faulty
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sensors/devices, or attacks in the object layer. The network layer transmits the data using diferent communication
tools such as mobile networks (3/4/5 G), Bluetooth, Wi-Fi. Reasons for losing data in the network layer due to
various attacks, boundary speciication problems (a task of specifying inclusion rules for relations in a network
study), encryption/ decryption problems, or faulty devices. Those transmitted data are stored and processed in
the application layer. The collected data are preprocessed (noise detection, imputation) to decide on the available
data for various applications. The application layer is responsible for deining and delivering the application and
services to the speciic user. Incomplete data exists in this layer due to human error (user may forget or refuse to
use wearable sensors all time, iles are lost, or data are not recorded properly), non-response in an online survey
(research participants could ignore or forget to respond the questions), the high dimensionality of real problems,
sometimes due to unknown reason or deletion or error during record or transmission process. With multiple
heterogeneous networks, IoT is a complex system.
In IoT architecture, all the layers are responsible for the missing values, no matter how strictly intelligent

systems are designed to collect data from high-quality sensors, regardless of how much investigators attempt
to prevent the. Fig. 1 illustrates the IoT architecture and reasons for the missing value in each layer. Data
preprocessing (incomplete data handling) is an essential step that needs to be computed ahead of data analytics to
augment data quality accurately and eiciently [145]. Hence, designing a preprocessing tool is essential to ensure
a higher possibility of retaining information. High-quality data can only achieve high-quality data mining results.

2.3 Incomplete Data Mechanism and Patern

Based on diferent assumptions and generating mechanisms, incomplete data mechanism is categorized into
three classes [118], [76], [113] as Missing completely at Random (MCAR), Missing at Random (MAR), and Not
Missing at Random (NMAR). The mechanism of the missing data is based on the classiication of data. Data are
in MCAR, if the probability of incomplete data is not dependent on both Xobs (observed data) and Xmis (missing
data) where missingness occurs completely at random in datasets. In simple terms, missingness is independent
of input values, where no correlation exists between missing data and observed data. For example, some EEG
signals have been missed due to power outages, device failure, or Internet connection problems. In such a case,
the probability of an observation being missing depends on itself and the equation reduces mathematically to
Pr (R |Xobs ,Xmis ) = Pr (R) [34]. MCAR is a common but strong assumption for datasets. Traditional imputation
techniques follow MCAR, and they do not create bias; however, the standard error will be increased due to the
reduced sample size. A considerably weaker assumption than MCAR but still strong is MAR, which occurs if
the probability of missing data depends only on the observed part but not on the missing part after controlling
the observed part [118]. The missingness depends on observed input data, where correlation exists between
missing and observed data. For example, some particular data values are likely to be missing in the afternoon. The
probability of missing value reduces mathematically to Pr (R |Xobs ,Xmis ) = Pr (R |Xobs ). Since the missingness
is not dependent on the observed part, i.e., MCAR is a special case of MAR [53]. It is possible to adjust the
missing values, hence, MAR and MCAR can be ignorable. NMAR is the case that does not belong to MCAR
and MAR. Missingness depends on the observed and unobserved value, i.e., they correlate with the sequence
of missingness in NMAR. For example, a man removes wearable devices during shower time. From the three
mechanisms mentioned earlier, MCAR or MAR is applicable but not under NMAR.
The result from missing data is governed by the pattern and mechanism of missing data, both of them have

a more signiicant impact on the analysis of data. Univariate, monotone, and arbitrary are the three patterns
of missing data [53]. Under the assumption of having q variables, an item on x1,x2, ...,xq may have a wholly
observed dataset while missing value occurs on item y is a univariate pattern. It also includes the circumstances
in which y represents a group of an item that is either entirely missing or observed for each unit. The monotone
pattern is that pattern in which the variableyj is missing for a unit andyj+1, ....,yq is missing as well on respective
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dataset y1,y2, ....,yq . The monotone pattern generally occurs in longitudinal datasets. When missing data occurs
in a random pattern is called an arbitrary pattern. The arbitrary pattern is more complicated to handle rather
than a univariate or monotone pattern.

Table 2. Classification of the various types of gaps in the missing data.

Types of Missing Gap Continuous Missing Gap

Point Missing Gap 1

Short Missing Gap up to 3%

High Missing Gap 3% to 10%

Very High Missing Gap ≥10%

2.4 Missing Amount and Gap in Datasets

Missing amount in the dataset refers to the missing ratio of the missing data and total data in the dataset. The
missing gap in the dataset refers to the continuous missing gap in the variable of the dataset. It is one of the
critical components that deine the success or failure of imputation techniques. The missing gap in IoT dataset
can be classiied mainly into four categories as presented in Table 2. One single missing gap is a point missing gap.
The continuous missing gap of more than 2 continuous gaps to 3% of the data in a variable is termed as a short
missing gap. The continuous missing gap from 3 % to 10% of the data in a variable is termed as a high missing
gap. The continuous missing gap higher than 10% of the data in a variable is a very high missing gap. Point and
short missing gap occur frequently. When high and very high missing gaps exist, the trend, pattern, and structure
of the data are entirely broken. Recovery of such gaps needs to address patterns, trends, and structure of the
data that makes the process more tedious and complicated. It is to be noted that most of the existing research
conducts experiments to impute missing data stating that simulated or real data consists of 50% of the missing
data. Such missing data is based on the missing rate or amount, lacking the information about the missing gap.
Those data usually contain a point missing gap and a short gap only. Signiicantly few literature address the
high missing gap problems; this shows an immense need for more research to handle the ongoing missing gap
problems because most of the existing methods result in a high error and low accuracy. The high missing gap
problem with low error and highly accurate imputation results are addressed in [2], [79].

3 HANDLING OF MISSING DATA IN IOT SYSTEMS

This section provides a brief introduction of the major strategies of imputation in the IoT domain. Moreover, we
categorize the existing methods according to the assumptions used, principles, and approaches. Various strategies
adopted for the handling of missing data are described in Fig. 2.

3.1 Deletion Methods

3.1.1 Listwise Deletion: Listwise deletion or complete-case analysis, the most commonly used method by data
analysts, and the default in data analysis packages remove all the data for a case that has one or more missing
values [53]. An "honest" method for handling missing data is compared to an intelligence-based method or a
hybrid method because the standard error predicted is usually precise estimates of true standard errors. It works
ine in MCAR due to the sub-sample of cases when complete data is identical to a simple random sample from an
original target sample, which rarely happens in reality [131]. However, when data are in MAR, it produces a bias
in parameters and estimates, indicates loss of potential information and power in the testing hypothesis, creates
wider conidence intervals, and a more massive standard error [76].

3.1.2 Pairwise Deletion: Pairwise deletion or available case analysis, where only missing values are discarded
is a framework to proceed the imputation process. It does not create pseudo-values to inlate the amount of
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Fig. 2. A Schematics demonstration of the methods to handle the missing data in IoT. Here, imputation techniques are

divided into three main categories: statistical, intelligent, and hybrid approach.

information or abandons the information [53]. It focuses on the variance-covariance matrix but can produce an
inter-correlation matrix that is not positive deinite, which prevents further analysis [76]. Based on the available
cases, estimates of mean, variance, and covariance or correlation are computed with the caveat that there will be
diferent sample size datasets and standard errors [145], [42]. It is known to be less biased for MCAR or MAR
data as appropriate methods such as covariates are included but not suitable for high missing observation.

3.2 Imputation Strategy

A standard method to handle missing values is to ill them with estimated (imputed) values. Its primary objective
is to maintain the quality of the data by imputing unbiased and trustworthy data. All the sensor-generated data
have their own IoT paradigm features and are diferent from each other such as numerical, ordinal, and binary.
When such data values are missed, they require various methods to handle them. For example, data generated
from biometric sensors are based on pattern recognition, whereas temperature sensors are time-series. Diferent
techniques lie under the heading of imputation. The imputation approach is further classiied as a statistical-based
method, an intelligent-based method, and a hybrid method. These methods are illustrated in Fig. 2 and discussed
in the next section.

4 STATISTICAL BASED IMPUTATION TECHNIQUES

Statistical imputation is classiied into two types as Single Imputation (SI) and MI [60]. However, in [47] classiied
statistical method into three as, SI, MI, and Model-based approach. Based on the deinition of MI, a model-based
approach is also a MI.

4.1 Single Imputation

SI is the process of illing distinctly one value with some reasonable guess (real value) for each missing one.
Assumption: Each missing value is assigned one value only; hence, imputation takes place only once. There are
various kinds of SI proposed by researchers which are described briely as follows:
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4.1.1 Mean-Based Imputation: This approach substitutes for all missing values with their corresponding mean
from the observed data, which entails inlation of the certainty of the information. This is one of the easiest
strategies of imputation, and can signiicantly break the inherent structure of the data. In IoT applications,
mean imputation does not preserve the trend, data structure, seasonality and may act like an anomaly, such as
conditional anomaly and collective anomaly based on the missing gap. The major drawback of this method is that
it leads to inconsistent bias, increases sample size without any information, decreases correlation, underestimates
the true variability of the variables, and the sampling error of the estimate. There exist various mean-based
imputation that performs competitively in time-series datasets [53]. They are row mean, mean top-bottom, hour
mean, mean 6-hour, mean 12-hour, daily mean, last and next mean, previous year mean [99].

4.1.2 Regression-Based Imputation: Regression imputation is also termed conditional mean imputation, where
an observed item of the data is used to predict the missing item. Regression models build the relationship between
the dependent and independent variable (one or more) to predict, relying upon the independent values. It assumes
that the imputed values lie on a regression line having non-zero slopes, which implies a correlation of 1 between
the missing outcome variable and predictor. When the random residual value is added to the predicted value,
it is called stochastic regression [42]. Variability and covariance are better preserved and less underestimated
in this solution, but the imputed value lies directly on the regression plane, so there is still some degree of
underestimation. Regression imputation is usually implemented when the dataset exhibit a temporal pattern
and does not contain noisy data. Better estimates are observed from this method when the correlation is linear;
however, accuracy might decrease when predictor and response are not highly correlated. Data deviation from
the mean is also preserved through parameter estimation. It also underestimates the variance and overestimates
the correlation. From the distribution error, the estimated error can be estimated [53], [76]. Some methods that
implement a regression are:

Autoregressive Moving Average Models (ARMA):. The ARMA combines the basic linear processes, Autoregressive
(AR) and Moving Average (MA), representing a stationary time series. The model is dependent on past values and
random error of the past time and cannot deal with the issue of trend and seasonal patterns that are non-stationary.
The auto-covariance and power spectrum function are decided completely as the estimated parameter of the
ARMA model. The accuracy of the ARMA model can be obtained better than the nonlinear optimization of the
log-likelihood function by using a reduced-statistics algorithm [23].

Autoregressive Integrated Moving Average Models (ARIMA):. To solve the problem of non-stationary time-series,
a new model was proposed, which is the integrated form of the ARMA known as ARIMA [22]. To estimate
parameters in the ARIMA, autocorrelation function and partial autocorrelation function are also crucial to
compute, which helps to test if the residual is white noise or not [45]. The ARIMA model is used when the dataset
exhibit temporal pattern and contains large datasets. However, alteration in observation and model speciication
leads the model to be unstable.

4.1.3 Interpolation: Linear interpolation its a gap between the last and next observation based on the mean
of values over a similar time interval with an identical luctuation pattern. The performance of this method
is limited though it is one of the best imputation methods when the missing gap is one or two [59]. However,
when the missing gap increases, accuracy decreases. Prediction ability is also limited, i.e., lies between last and
next forward observed data. There are various types of interpolation, such as cubic, inverse distance weighting,
Kriging, optimal interpolation [154], [141]. These methods perform well when there exist a point missing gap
and a short missing gap in a sensor-generated dataset.

4.1.4 Proximity-based Method: In this procedure, the incomplete values are substituted based on the proximities
measured. Methods using diferent proximities measures are:
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Nearest Neighbor: Depending on the temporal proximity of the missing values to known observations, the last
or next observations of the gap are used to determine all the incomplete values [100]. The method performs
well when there is a missing gap of one or two. Prediction is limited so, imputation in high missing gap leads to
pattern anomaly, and accuracy decreases [59].

Hot / Cold Deck: Hot deck substitutes the missing values from those individuals who have observed matching
values and are closer in terms of distance in the current dataset [131]. Thus, non-response bias declines to the
extent that there is a collation between the variables deining imputation classes and the tendency to respond
and the variables to be imputed [10]. The method is suitable in certain missing patterns. It imputes genuine and
reasonable values, invalidates powerful parametric conditions, can include covariate information, and delivers
reasonable inferences for linear and nonlinear statistics in the presence of imputation uncertainty. The method
is problematic when the pattern of missing case difers, the correlation between other variables and imputed
variable could be weak causing the imputed variable to lose a portion of variance, estimating standard error can
be diicult and not suitable for big data where the number of classiication variables may be unmanageable. Cold
deck substitutes incomplete values with a model or external information rather than the closest entity in terms
of distance or information available in the dataset [99].

4.2 Multiple Imputation

In multivariate analysis, MI is one of the most appealing general proposals approaches for dealing with missing
data proposed by Rubin [113]. It replaces a missing value bym ⩾ 2 with possible values, each with a unique
estimate relecting the uncertainty attached.m estimates are combined to yield a single estimate. Correct estimates
of the standard errors and p-values can be achieved from the distribution of the variables from the diferent
estimatedm underlying distribution or imputation models [76]. Assumption: Imputation takes place multiple times
with various unique imputed values. The inal estimate is obtained through an optimal solution or by combining
multiple values. Relying on the deinition of the MI given by Rubin, based on the literature published and the
assumption used, we further categorize MI into two classes as model-based approach and imputation-based
approach, which are presented in Fig. 3.

Incomplete Dataset

Combine Dataset

Imputed 

Dataset 1
…

Imputed 

Dataset 2
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Dataset N

Analysed 

Dataset 1
…
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Impute Missing 
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Impute Missing 
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Fig. 3. A Schematics demonstration of the multiple Imputation, (a) represents Model-based Method and (b) represents

Imputation-based Method.

4.2.1 Model-based Technique: In the Model-based Technique (MT), a predictive model for each target variable
where data assumptions are made through the combined distribution of the variables available in the model
[47]. Usually, imputation takes place by the SI procedure or by the random illing of the data. Imputation of the
variable takes place once and is iterated further till the value gets converged. Various types of iterative imputation
techniques are illustrated in [78]. Fig. 3.a illustrates the schematics of model-based multiple imputation. In this
method, each missing value gets two values, the initial imputed value and the inal converged value.
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There are various types of model-based methods, which are described below:

i. Maximum Likelihood Based Imputation: Handling missing data using the theory-based Maximum Likelihood
Imputation (MLI) approach has been known for a long time [36]. When assumptions are met, an MLI estimates
missing data with desirable properties such as asymptotic normality, asymptotic eiciency, and consistency.
Asymptotic normality is essential for a normal approximation to calculate p-values and conidence intervals.
Asymptotic eiciency is essential to reduce standard error, i.e., estimation close to being fully efective. Consistency
indicates estimates are approximately unbiased in large samples. The MLI method is suitable when there is a
realistic assumption on the distribution of the data. Given the available data points, this procedure may produce
the variance-covariance matrix for the variables in the model and then use the variance-covariance matrix to
evaluate the regression model [118]. This approach is based on parametric mode, i.e., multivariate Gaussian
mixture model, which is applied in both imputations of missing data and itting the model. Some of the techniques
that implement an MLI are:

a. Expectation maximization (EM):. An EMwas proposed by Dempster [36], an iterative algorithm to indmaximum
likelihood estimates and it models of missing data problems. It capitalizes on the relationship between the
unknown parameter and the missing data. It does not impute the missing data but instead estimates data based
on an expectation step (E-Step). The E-step creates a function for the expectation of likelihood using the current
estimate of the parameter, and a maximization step (M-step) computes parameters to maximize the likelihood
available on the E-step, is repeated several times until the MLI estimates are obtained. The sequence of parameters
converges to the MLI estimates that implicitly average over the distribution of missing value [40]. It can be used
to get consistent estimates of the parameter of interest by estimating means, standard deviation, and correlations
or equivalently known as means and covariance matrix. It requires a large sample size and data in MAR [53]. An
EM estimator is more eicient and unbiased when the missing mechanism is ignorable. The method is complex,
convergence is slow, does not compute the derivatives of a log-likelihood function, does not provide a better
estimate of standard error.

b. Full InformationMaximum Likelihood (FIML):. The FIMLwas irst examined by Arbuckle using the Conirmatory
Factor Analysis model. This estimation uses information from both the complete and incomplete observations
in an integrated manner [7]. It maximizes the sum of the log-likelihood function for individual observation,
which contains both missing and non-missing observations. Modal parameters are estimated by MLI function
[42]. Diferent types of modeling are used to analyze the FIML estimation, like the regression model, structural
equation modeling. The "full information" identiier in the FIML demonstrates more about the incomplete data
analysis than the fundamental estimation principle [7]. The reasons that make the FIML popular are testing
model it can be performed easily and directly, and produced estimation result is always the same, can handle
any linear model and gives eicient estimates with correct standard errors. However, the computational cost
is high, requires specialized software as a speciic model, itting structural equation model when missing data
is higher and observed data is low, and cannot deal with negative binomial regression (count data) or logistic
regression (dependent dichotomous variable).

ii. Matrix Completion Method. The matrix completion method uses a matrix method to complete the incomplete
datasets. There are various methods that use the matrix completion tool.

a. Probabilistic Matrix Factorization (PMF):. The PMF decomposes a single matrix into a product of two matrices
and can obtain the original matrix by computing the product of two matrices [93]. It is used when there is a
numeric dataset. Fekade et al. [44] implemented PMF to recover incomplete data using the similarity measures
and k- means clustering. The PMF reduces the total number of stored values in a big data array due to the low
dimensionality after factorization, making it suitable for large datasets. Scalability in large datasets is achieved by
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using stochastic inference methods that randomly sub-sample missing matrix entries. Obtaining a convergent
solution might be a problem.

b. Singular Value Decomposition (SVD):. It is a powerful property based on the matrix factorization approach that
decomposes a matrix into a product of three simpler matrices [142]. The imputation begins by replacing the
missing values with zero and iterates through the SVD until convergence using the EM algorithm and computes
the SVD to obtain eigenvalues. The obtained eigenvalue is applied to regression to the complete attributes of
the instance and the estimated imputation of the missing value. Using the matrix method, one must be cautious
that the results are not deinite positive, or the last eigenvalue must be negative. Sometimes the methods might
fail, especially when the correlation matrix is not positive deinite [53]. The SVD is used for many purposes, and
imputation is one of them. In ITS, various methods about tensor decomposition methods have been proposed and
implemented. Tensor decomposition is the extension of SVD in higher-order [88], [31]. SVD is computationally
fast, can handle various sized data, and is used in mixed types of data.
To get a preliminary PCA model from the available data, it requires a previous estimation of the number of

components. Then, the imputed values obtained from a regression loadings substitute for the missing value.

c. Principal Component Analysis (PCA):. The PCA approach is identical to the projection to the model plane of
Philip et al. [94] without contributing error prediction. Estimating the number of components before generating
an initial PCA model from the provided data is necessary. Then, the imputed values obtained from regression
loadings substitute for the missing value, which calculates from the updated data matrix, and the process is
repeated until convergence [94]. It is based on a strong theoretical framework that improves the performance
of an algorithm that is implemented in the mixed dataset. The computational complexity is high, sometimes
convergence and overitting is a problem. Instability in the imputations may yield due to the presence of too
many voids [51]. This method has been extended using PPCA (Probabilistic Principal Component Analysis) is a
combination of an EM and PCA, and BPCA (Bayesian Principal Component Analysis) is the combination of PCA,
Bayesian estimation, and EM [107], [92] and implemented in ML.

d. K-Nearest Neighbor (KNN):. KNN, the most popularly implemented machine learning-based imputation algo-
rithm [75], identiies the closest k observation based on a distance matrix and computes the weighted average
(weighted based on distance) of k , for each observation. The incomplete data are substituted by the mean of the
corresponding attributes of k neighbors that contain complete data and take the correlational structure of the
data [142]. The common distance metrics used are Pearson correlation, Euclidean distance, Mahalanobis, variance
minimization, etc. [30]. The value of k will be diferent based on the problems. Increasing the value of k in the
KNN and its extensions such as WKNN (Weighted KNN), SKNN (Sequential KNN), GKNN (Gray KNN) augments
the time complexity to impute missing value and capture close records but may not considerably enhance the
results [81]. Imputation using the KNN is preferred in the presence of numeric data set. Modiied KNN based on
temporal and spatial correlation is implemented in [138]. Imputation of the real data, all the missing values can
be imputed in all variables with a single call function are its beneits. However, this method is not suitable for
large datasets and encounters hardships when there exist many variables.
The KNN has also been extended using the ML technique to impute the incomplete data [39]. In [104]

implemented KNN in the spatiotemporal data, compared with other time-series imputation strategies where
KNN is the most superior imputation. In [32] proposed a new purity-based KNN for inancial datasets, and the
results achieved better accuracy and stability.

iii. Time Series Modelling. A speciic type of analysis that is based on time is time series analysis. An attractive
method to model the data as time series is due to its data-dependent nature on the previous values within the
same variable. Imputation can build a model for the data then use the imputation model to impute missing data.
Some of the models are described here:
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a. Box-Jenkins: The Box-Jenkins model is a univariate model based on statistical principles and concepts capable
of the model-wide spectrum of time series nature. For time series forecasting, it is a general framework that
prioritizes identifying the interactive approach with a suitable model represented by a linear combination of
random variables and past data [22], [45]. The Box-Jenkins is one of the popular choices on time series modeling
among data analysts due to a wide variety of time series patterns that can be modeled. The model can be veriied
using many statistical validity tests, used for accurate prediction, etc. However, the Box-Jenkins methods cannot
be applied directly but can be computed with the help of the MLI or Kalman ilter algorithm [50].

b. Kalman Filter: The Kalman ilter is a recursive, optimum technique for estimating the state of a system by
disseminating a probability density function accustomed to a collection of observations at any point in time. It
works under the assumption of linearity, Gaussian distribution, and all noises are white. The Kalman ilter always
gives a unique estimate due to its assumptions and probability density function. It imputes or estimates missing
value using the Kalman smoothing and state-space models. Sometimes overestimates and underestimates the
missing value resulting in biased results [20].

c. Singular Spectrum Analysis (SSA):. The SSA is also considered as a principal component analysis in time series
that evoke information without the knowledge of dynamics afecting the time-series from noisy and short time
series [121]. Eigenvectors and eigenvalues are computed for the lagged autocorrelation matrix. Then, each PCA
of the original time-series identiied by the SSA is reconstructed. The PCA is computed with scale factor and
eigenvector to compensate for the missing values. Improved SSA for imputation is implemented in [127] where
lagged correlation matrix is computed as in SSA and PCA are computed directly from the eigenvector and
eigenvalues of the lagged correlation matrix. Similarly, the SSA with conditional prophecy for real-time state
computation and forecasting is implemented [101]. SSA imputation is deployed for continuous and discrete
time-series data where every component of the observed time-series can be reconstructed.

d. Kernel-Based Imputation: Kernel-based imputation using parameter optimization method is proposed in [106].
This method makes optimal inference on various statistical parameters such as mean, distribution function,
and quantile after the imputation of the missing data takes place. This method is believed to be better than the
deterministic regression imputation in terms of eiciency. The traditional Kernel function is extended using
non-parametric iterative imputation using a mixture kernel for estimating missing values in a mixed-attribute
dataset [167]. Kernel-based imputation is used when there is a discrete or continuous time-series dataset. The
method appears to be more robust to the violations of distributional assumptions than the existing doubly robust
methods. However, sometimes there is an augmented bias in the estimation.

e. Ratio Based Imputation (RBI): . RBI approach is based on information fusion techniques to handle high missing
gap datasets generated from the sensors [2]. The method undergoes multiple steps such as ratio computation,
imputation, and recovery. Imputation takes place by interpolation techniques. The method handled the highest
missing gap of 21% with the best results among compared techniques such as EM Bootstrap (EMB), Multiple
Imputation by Chained Equation (MICE). The method is improved by using an EM algorithm known as Iterative
RBI (IRBI) [3]. The IRBI improved the accuracy of the imputed dataset compared to RBI, EMB, MICE. RBI and
IRBI are deployed under the numeric temporal dataset. The method performs well in the very high missing gap
and when the dataset is highly correlated, however, works only on numeric data.

4.2.2 Imputation-based Techniques (IT). In IT, multiple values are allocated for each missing value based on
Rubin’s concept [113]. For each missing value, multiple unique values are allocated. At last, using certain rules,
the imputed data are combined to get a single estimate. Fig. 3.b illustrates the schematics of imputation-based
multiple imputation. Various types of IT are illustrated below:
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a. Bayesian Approach: Natural based solution to treat the missing value as random values by estimating their
posterior distribution is ofered by the Bayesian paradigm. MI involves the Bayesian paradigm, the fundamental
law of probability known as Bayes’ Theorem, which ofers an alternative model-based solution where missing
values are treated as an unknown parameter, drawn randomly through appropriate distribution, and assume that
the missingness mechanism is ignorable. Two imputation methods exist to deal using this approach as:

Markov Chain Monte Carlo (MCMC): . MI was irst proposed by Rubin based on a Bayesian computational
algorithm known as MCMC, also known as Data Augmentation (DA) [139]. Data is assumed to be multivariate
normal distribution and applied to the Bayesian inference that repeats the imputation step (I-step) and posterior
step (P-step). I-step: simulates the missing data value randomly from the available distribution value. Iterates the
process until simulated error distribution is smaller than the pre-speciied criterion or distribution is stationary
for mean, variance, and covariance. Imputation occurs if the condition is satisied. P-step: From the imputed data
sets, recalculates mean, variance, and covariance matrix from I-step when iterations are not enough, making a
random draw from the posterior distributions of this parameter. Finally, these parameter values are combined to
estimate standard error, eiciency, and update essentials needed for imputation [145]. These two steps are iterated
suiciently undergoing estimation by repeated conditional substitution and create a stochastic process known
as a Markov chain, which stabilizes or converges in distribution [53], [139]. MCMC imputation is used when
the assumptions are reasonable. Some of the beneits of using this method include using all the available data,
considering the data variability, and missing observations are imputed using estimates as the starting points for
augmenting the missing data points. Drawbacks include the assumption of the multivariate normal distribution,
computationally demanding, and high iterations requirements.

Multiple Imputation by Chained Equation (MICE):. MICE, also known as fully conditional speciication, is an
alternative algorithm that is a lexible and semi-parametric alternative that speciies the multivariate normal
distribution through a series of conditional densities by which imputation occurs [139], [150]. It starts with
an initial imputation from the marginal distribution with random draws, imputations by iterating over the
conditional densities, and sequentially by specifying an imputation model for each variable to the given variable
[26]. Random draws are made at each step from both the posterior distribution of the parameters. The missing and
imputed value at one step is used as a predictor in the imputation equation at subsequent step, and to stabilize the
results procedure, which is similar to Gibbs sampler, is repeated before selecting a completed dataset [150]. MICE
is deployed in all types of data. The method is simple and lexible and deals with complexities such as bounds or
survey skip patterns, which can handle all types of data. Some demerits include that statistical properties are
diicult to establish, computationally much slower, and do not have theoretical justiication.

b. Expectation-Maximization with Bootstrapping (EMB):. EMB is a technique generated by integrating the EM
algorithm and the Bayesian classiier using the bootstrap method to make draws from the posterior distribution
[55]. Imputation Posterior (IP) in MCMC and EM are the two statically appropriate ways of taking those drawn
from a posterior distribution. EMB takes advantage of the best features of each technique and integrates them.
Bootstrap estimation is usually used when a parameter distribution is supposed to be non-normal, and bootstrap
inference with missing data is not clear [122]. Honaker et al. [56] describes the procedure to implement EMB
using software named AMELIA II. EMB imputation is implemented when data undergoes multivariate normal
distribution. The result produced by EMB is slightly better than the consequence performed alone. EMB is Highly
accurate in building a classiication rule. However, it is challenging to implement for attaching standard error,
especially when imputing missing data, and the process to obtain valid bootstrap inference remains unanswered.

Due to space limit, the Combining Estimates, Standard Error, and Eiciency in Multiple Imputation is available
in supplementary online material.
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Table 3. Some examples of Classification-based imputation using Neural Network.

Neural Network Used References

Multi Layered Perceptron (MLP) [129], [130]

Radial Basis Function (RBF) [82], [38]

Auto-associative Neural Network [67], [48],

Probabilistic Neural Network (PNN) [97], [133]

5 INTELLIGENT BASED IMPUTATION TECHNIQUES

Intelligent-based imputation techniques are further classiied into two divisions as machine learning-based
techniques and deep learning-based techniques. The advanced form of machine learning is deep learning that
uses multiple layers of a neural network to learn and make an intelligent and precise decision on its own. It
possesses high computational complexity requiring large data and a longer processing time. Similarly, due to the
existence of many imputation approaches based on deep learning, the diference in computational complexity,
and algorithm structure, we classify intelligent techniques into machine learning and deep learning.

5.1 Machine Learning-based Imputation

5.1.1 Classification-based Imputation: Classiication is a technique for learning a model (classiier) from a set of
labeled data attributes (training) and then using a learned model to classify a test instance into one of the classes
(testing). Using the accessible labeled training data, the training phase learns a classiier. Similarly, using the
classiier, the testing phase classiies the test instances as normal or imputed. Classiication based imputation
operates under the following assumptions:
Assumptions: A classiier can impute the missing value in the given feature space.

a. Neural Network Based: A neural network is a probabilistic model for processing data performed by the biological
nervous system, such as the human brain. Neural networks are known to be capable and highly eicient in solving
complex tasks related to forecasting and modeling of the experts and intelligent systems [19]. The neural network
models are based on the classiication of the missing data and have been applied under multi-class and one-class
settings. Various models under the neural network are used to impute missing data that belongs to various types
of data. Neural networks imputation is used when there is a nonlinear relationship between variables, and the
missing mechanism cannot be determined. Neural networks can be modeled for complex patterns without prior
information. However, unrealistic results can be achieved while performing numerous patterns containing noise.
A variety of combinations can result in necessitating numerous neurons. Table 3 illustrates the several neural
networks techniques and references that have been implemented in the handling of the sensed data.

b. Bayesian Network Based: A Bayesian network-based method is ubiquitous for modeling and reasoning under
uncertainty in classiication and prediction problems. It is a probabilistic graphical model representing a joint
distribution of random variables [117]. The testing phase is fast; however, each test instance might be essential to
be compared again to the pre-computed model. Computational complexity is high, making it computationally
slow. Roosevelt et al. [117] presented a strategy for revising a Bayesian network structure in the presence of
missing data. A node is associated in a directed acyclic graph where an edge connecting a pair of nodes stands
for a direct relationship at each random variable. The relationship between the variables is represented in a
human-readable way, taking local probability distribution and conditional independence into consideration. Chen
et al. [153] implemented a joint model to impute the missing data by integrating the Bayesian inferences with
crowd-sourcing. This helps to improve the performance and accuracy of the imputation algorithm, and reduces
cost. Similarly, Ma et al. [87] presented a review of the imputation using Bayesian methods.
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c. Support Vector Machine (SVM):. Relying upon statistical learning, a powerful ML techniques for regression or
classiication is developed known as SVM. SVM is based on SVM regression to prophesy the missing condition
attributes values. The procedure begins with selecting the no missing attributes value where the condition
attributes (input attributes) are set, with incomplete data, decision attributes (output or classes), and decision
attributes as the condition attributes by contraries. Then, decision attributes are predicted using SVM regression
[57]. SVM imputation can deal with continuous and discrete numerical types of data. It can efectively handle
non-linear problems and complex missing data patterns by lowering the generalization bound error, ensuring
best-case performance [33]. When over-itting occurs, a remedy to diminish the number of errors on the training
set that underperform on data is identiied. However, a kernel function must be chosen, and cross-validation
must be used to estimate a small number of parameters. SVM was extended using least square SVM [147] and is
comparatively faster than the SVM.

d. Decision Tree (DT):. The main objective of DT is to generate a model that can predict the value of a target
variable depending upon the various input variables. DT splits the dataset into leaves, where mutually exclusive
records exists in each leaf. Imputation takes place within the leaves. The classiication tree and regression tree
are two types of DT. Commonly used DT are Iterative Dichotomiser 3 (ID3), C4.5, Classiication And Regression
Tree (CART) [109].

C4.5 is the extended form of ID3 that allows the features of the discrete attributes. Pruning is done by the
rule’s prediction that takes place by the removal of the rules precondition. CART is similar to C4.5; however, it
does not compute rule sets and supports regression (numerical target variables). CART and C4.5 are used for
imputing numerical and categorical attributes, respectively. C4.5 is extended using the EM algorithm known as
EMI [120]. EMI is extended using DMI and SiMI [110]. The extended methods showed clear superiority of the
techniques compared to the existing ones. DT are deployed in the presence of mixed types of data. Non-linear
variables are handled eiciently, and training time is reduced because the system is simple and can automatically
handle missing values. Sometimes DTs are unstable (in addition to data points), unsuitable for large datasets due
to high variance and high risk of overitting.

e. Random Forest (RF):. RF, an extension of the classiication and regression tree, integrates the tree predictors
where each tree is dependent on the random vector sampled independently in the same distribution of all trees in
the forest. The RF-based algorithm for imputation is MissForest [135]. This procedure accurately predicts the
individual incomplete value instead of random draws from a distribution, leading to biased parameter estimates
in statistical models. RF imputation is used especially for mixed types of data. It has a robust predictive power and
does not rely on speciic distributional assumptions (such as regression model) and can accommodate interactions
and nonlinearities [124]. To reduce the risk of overitting, RF uses bootstrap aggregation of multiple regression
trees, and more accurate predictions occur after the combination of predictions from the various trees. Apart
from this, various algorithms exit under RF, such as proximity imputation, on-the-ly imputation, and imputation
utilizing multivariate unsupervised and supervised imputation [140]. Computational time is high, making it not
suitable for high datasets and lacks interpretability. Kokla et al. [65] compared mean, SVD, PPCA, BPCA, RF, and
KNN. The results showed that the RF performed better in all the experimental analyses. Similar results were
illustrated in [124].

5.1.2 Clustering-based Imputation. Clustering-based imputation techniques are based on the following assump-
tion:

Assumption: Partition of the data into several clusters based on similarity patterns andminimize the intra-cluster
dissimilarity.
The clustering algorithm categorizes data elements into various classes known as clusters. Cluster analysis

includes analytical decisions, selection of a number of clusters, which algorithm and metrics to use. Xavier et al.
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[14] designed a framework to integrate multiple imputations to cluster analysis. Based on the recent literature, the
clustering method adopts two diferent frameworks: single-view and multi-view clustering. The classic clustering
method is single-view clustering, in which data is shown using all available features. Similarly, multi-view
clustering is the new technique where data is depicted based on the multiple subsets of features [154], [164].
Recently, temporal, spatial, global, and local views are being considered in the multi-view approach. Xiuwen
et al. [155] used the temporal correlation and spatial correlation-based multi-view learning method to impute
time series data. The main goal of the clustering technique is to classify the dataset into clusters according to the
similarity of the objects by minimizing the intra-cluster dissimilarity.

• Kernel-based methods: Using the kernel matrix, incomplete datasets are preprocessed, and inal clustering
is achieved by exploiting the multiple kernel learning [125]. It is also known as partitioning or prototype.
Here, non-linear structures have been identiied, and the dataset is suitable for real-world use. In complex
types of data, the fast testing phase can be adopted. Specifying the number of clusters and initialization of
random assignment of observation has a big impact on the outcome of the cluster.
• Subspace-based approach: The transformation metric or matrix factorization integrated with the regular-
ization to project missing views into a shared latent clustering subspace [156].

a. K-means Clustering: In this technique, intra-cluster dissimilarity is computed by using the distances between
the objects in a cluster is measured along with the mean value (centroid) of the cluster [72]. Every data item
in a cluster contains the membership function that deines the degree to which the data object belongs. Only
the complete attributes are taken into consideration during the membership updating process. Each missing
data item replaces non-reference attributes based on the information about membership degrees and the cluster
mean (centroid) value. It is to be noted that cluster mean is not assigned as the data items of the concrete cluster.
After the cluster gets converged, all the non-reference attributes for each incomplete object based on cluster
information are imputed. The same cluster data objects are treated similarly to KNN. K-means clustering is
extended using a fuzzy approach known as fuzzy k-means clustering [89], where missing values are estimated
using a weighted average estimated from cluster centroid and membership degree. K-means clustering imputation
can be deployed on mixed types of data. The algorithm is lexible, easy to implement, eicient, and more accurate.
However, it is dependent on the initial value and needs to choose the value of k manually.

b. Self-Organizing Map (SOM):. SOM deines a mapping from the input space of a low-dimensional space, i.e., 2D,
and enables the feature space dimension approximation into a projected 2D space by preserving the topological
properties. Hence, it is useful in visualizing the dimensional view of high dimensional data through the nonlinear
projection using the neighborhood function [46]. SOM is a competitive learning method where the training
algorithm is iterative, used in inding the imputation classes [116]. The weighting vectors are initially set randomly;
however, they converge until the end of the training process to achieve a stable value. SOM is capable of modeling
the nonlinearities of a system considering relationships among pertinent variables in the vector-proile of the
data record [90]. As a clustering method, it is a basic competitive topological network preserving during the
mapping of input space to the clusters from the input space. The network parameter and structure can change
using the adaptive self-organizing structure through which samples of inherent laws and important qualities may
be automatically sought. SOM is a good tool used in the prediction of a variety of datasets, including temporal
data, as it preserves the crucial relationship of the observed data elements. In the presence of large datasets, the
convergence rate is robust, and the computational beneit is signiicant. However, there exists a limited capacity
for prediction, i.e., prediction is within the range of the observed value.

5.1.3 Fuzzy Approach: Assumption: Imputation techniques based on Fuzzy approach.
The fuzzy approach was developed by Zadeh [159] based on probability theory to handle uncertainty, im-

preciseness, and incertitude tangled in the decision-making process. Various imputation strategies based on
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fuzzy approach exist in the literature [16], [8], [89], [95], [96], [123]. Fuzzy approaches have been used for both
the classiication [8], [62] and clustering [89], [95] imputation techniques. A fuzzy rule-based classiier was
proposed in [16] where each principle can be broken down into a particular single-dimensional member functions
analogous to fuzzy sets. Mehran and Richard [8] used a fuzzy rough method to impute missing values without
using iteration methods or optimization methods based on classiier techniques. Fuzzy clustering is appropriate
when an instance does not belong to any class as a missing value. The imputation process undergoes modularity
and explainability. Execution rules can be carried out in parallel. However, deining rules is a time-consuming
process, making it computationally expensive.

Usually, euclidean distance is deployed as the similarity function in fuzzy c-means [18]. Razavi and Saif [112]
implemented fuzzy neighborhood-based clustering techniques. Nikfalazar et al. [96], Ming et al. [89] used k-means
to initialize the fuzzy model. The global k-means algorithm is to compute the number of clusters present and
to improve the computation. This method was further improved by using grey system theory in [123]. The use
of grey system theory increased the performance of Fuzzy c-Means Clustering (FCMC). Sanaz et al. [95] used
iterative methods on fuzzy k-means (IFC), which improved the imputation results. Similarly, the integration of
IFC and DT leads to a DFIC [96], resulting in robust and better performance compared to other techniques.

5.2 Deep Learning-based Imputation

Deep learning techniques allow computational models consisting of several processing layers for learning data
representations with numerous abstract levels [70].
Assumption: Methods that use deep learning to impute the missing data.
Various types of imputation techniques implemented in deep learning are :

5.2.1 Deep Autoencoders : Deep autoencoder networks are such networks that memorizes input as output in
the output layer, predicting new input values as the outputs when presented with new inputs [71]. Miranda et
al. [91] implemented an autoencoder with backpropagation to impute missing data, where each autoencoder
consisted of a single hidden layer, and linear activation function was available in input neurons. The use of
the evolutionary particle swarm optimization approach helped in recomposing missing values quickly and
eiciently. Contrary to the autoencoder, variation autoencoder was proposed by [64]. Variation autoencoder
is a generative model that encourages generalizing the features by reconstructing samples and aggregating
them, forcing the latent space to be continuous. Here, a stochastic gradient optimization approach was used.
Fitting an approximation inference model to a dataset containing continuous latent variables per datapoint can
make posterior inference more eicient. Similarly, Abiri et al. [1] proposed denoising autoencoder, which can
reconstruct data by stochastically corrupting it. The method can handle multiple types of data, including mixed
types of data in low computational time, which implemented a stacked denoising autoencoder. Linchao et al.
[73] proposed MultiModal Deep Learning (MMDL) model based on stacked autoencoder, a deep network created
by stacking many layers of autoencoders, to impute the spatial and temporal traic data. The distance between
the latent features of two heterogeneous datasets is reduced in the total loss function. The method accurately
captured temporal and spatial dependencies. Autoencoder imputation is robust and compact in the inal encoding
layer, which can be applied for all types of data and real-valued data. The computational complexity and cost
are high. Sometimes, the method is slower on continuous and binary data during learning time due to decoder
backpropagation. Overitting can occur due to a lack of data on using the overparameterized model.

5.2.2 Recurrent Neural Network (RNN):. The RNN is based on the objective to use the sequential information,
which links between the unit to form a graph with directed edges along the sequence [71]. Strong prediction
performances with the ability to capture variable-length observations and long-term temporal dependencies are
the signiicant attraction properties. Various RNN such as Gated Recurrent Unit (GRU) [27], Long Short Term
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Memory (LSTM) [128] has been implemented in the prediction and imputation of the sensed data. To accomplish
better results by utilizing the missing patterns and preserving the durable temporal dependencies, GRU efectively
incorporates two representations of missing patterns, namely masking and time interval. Back-propagation is
used in jointly training all model elements. Xingjian et al. [128] implemented Convolution LSTM (ConvLSTM) to
predict the missing values in spatiotemporal sequences. ConvLSTM utilizes and creates a trainable end-to-end
model for prediction. The results prove the proposed method could preserve the spatiotemporal dependencies
with precise results even in high missing gaps. Recently, transferred long short-term memory-based iterative
estimation (TLSTM-IE) is proposed to impute sensed data by Jun et al. [85] based on the LSTM technique. The
method takes beneits from deep learning, transfer learning, and an iterative process. The method learns from
the observed data, transfers the information on the missing value, and uses that information on the imputation of
the missing data where the iterative method estimates and imputes missing value. The method can secure the
long-term moving trend by estimating the values based on observed data. RNN imputation is a versatile method
that can be combined with other techniques to produce precise results. It can be deployed in a sequential dataset,
used to model a set of records (for example, a time series) so that each pattern is thought to be dependent on the
preceding ones. However, due to higher computational complexity, training the RNN is tedious.

5.2.3 Convolution Neural Network (CNN):. The CNN is designed to process data that are generated in the form
of multiple arrays that is specially designed for image analysis [70]. Zhuang et al. [168] used CNN to impute
missing data in intelligent transportation systems where traic data were converted into an image and analyzed.
The basic strategy is to integrate the features of the encoder-decoder pipeline and the loss function of GAN.
Wang et al. [148] investigated to address the incomplete and multisource structure of medical data using CNN
and designed a technique to integrate feature clustering to enable the matrix-based representation and CNN for
feature extraction and fusion to explicitly exploit data structure from multisource. Similarly, Zhang et al. [161]
used the uniied spatial-temporal-spectral CNN technique to reconstruct missing data in remote sensing images.
The model learns through deep CNN by acquiring a nonlinear end-to-end mapping among incomplete data and
intact data with auxiliary data. The model was able to handle multisource data (spectral, spatial, and temporal)
containing missing values. Generally, CNN imputation is used in Spatio-temporal image datasets.

5.2.4 Generative Adversarial Network (GAN):. GAN was introduced by Goodfellow et al. [52] as a class of
generative models that consists of discriminator and generator. The synthetic data is generated by a generator
which is compared by discriminator against the real data. It works by mimicking the distribution of the real data,
which is able to generate "real" samples from a random "noise" learning from the latent distribution of the dataset.
GANs provide us with more options for modeling data distribution. Jinsung et al. [157] introduced Generative
Adversarial Imputation Nets (GAIN) to impute missing values using the GAN framework.The objective of the
generator and discriminator is to precisely impute missing data and discriminate between observed and imputed
data respectively. Classiication loss is minimized through training of discriminator, and misclassiication rate
of the discriminator is maximized by training generator. An adversarial technique is used to train these two
networks. However, this method was focused on non-sequential datasets and could not process temporal data.
Luo et al. [84] implemented GAN in multivariate temporal datasets by integrating multi-channel CNN and deep
convolution GAN. The method imputes missing values robustly, and more accuracy was obtained even when the
missing rate increased. GAN imputations are implemented in non-sequential datasets, where the model learns in
detail using an adversarial approach from observed data producing highly accurate results. However, it is harder
to train due to high computational complexity, and some approaches could not process the temporal data.
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5.3 Hybrid Imputation

Assumptions: Integration of two or more diferent algorithms.
The most recent development in imputation technology is a hybrid system. Hybrid algorithms are a combination
of two or more algorithms. Hybridization is used to overcome deiciencies of a particular algorithm, to exploit the
beneits of multiple strategies while overcoming their shortcomings to handle in all situations. The hybrid models
are designed to trade of eiciency for improved accuracy by strengthening the reduced modeling. Such methods
are selected and tested so that the results are better than the methods performed independently [31], [28].

Such integration occurs between SI and MT or SI and MT and classiication-based or SI and MT and clustering
or IT and classiication or IT and clustering or classiication and clustering or among deep learning techniques.
Michail et al. [28] implemented a hybrid method by combining MICE and KNN. The method performed better
than performing independently. A hybrid method, fuzzy c-means, combines support vector regression, and a
genetic algorithm was implemented, and the result performed well [11]. Zhongrong et al. [163] implemented
a spatiotemporal hybrid imputation method using SOM, fruit ly optimization, and least square SVM. The
results demonstrated that the hybrid method was robust and accurate compared to other methods of performing
independently. Liu et al. [77] implemented multiple kernel clustering, integration of the kernel method, and the
clustering method. The algorithm is claimed to achieve superior performance, verifying the efectiveness, and
the improvement is signiicant with the increase in missing ratio. Junninen et al. [60] compared SI, MI, ML, and
hybrid imputation techniques in air quality datasets. The authors concluded that better performance is possible
by the hybridization of the multivariate methods.
The Bagging algorithm [9] is designed with the objective to improve accuracy by utilizing block bootstrap

techniques and marked point processes. Moving, non-overlapping, and circular block bootstrap techniques along
with integer-valued sequences and amplitude modulated series are considered, such as Linear and Stineman
interpolations, weighted moving average, and Kalman ilters. Datta et al. [35] deployed an integration of both
the KNN and the penalized dissimilarity measure with a feature weighting approach to address the problem
of the incomplete value, which can be directly applied to datasets containing the missing value without any
pre-processing. Imputation based on ensemble approach is deployed in [46] where SOM and KNN were used
as a classiier. The integration of powerful modeling ability of deep learning network (LSTM) and lexible
transferability of transfer learning (bidirectional imputation) is proposed in [86].
Due to space limit, the comparison of imputation methods highlighting pros, cons, and when to be used in

context of IoT is available in supplementary online material.

6 PERFORMANCE INDICATOR

Various performance indicators were designed to delineate the goodness of imputation. Direct evaluation and
Classiication accuracy are two common techniques used for imputation.

6.1 Direct Evaluation

Evaluation of imputation techniques is done based on the predicted and corresponding observed value using the
performance indicator in direct evaluation. Some of the commonly implemented approaches are: The coeicient
of correlation (σ ) is the most popular indicator of agreement on evaluating imputation values. It explains the
variability in imputed data and the amount related to the observed values. It is computed by using Eq. (10).

σ =
1

N

N
∑

i=1
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) (

Oi −O
)

σPσO





(1)

the coeicient of determination (σ 2) denotes the square of σ . Value of σ 2 and σ are circumscribed to a range
between 0 and 1, values closer to 1 resembles a better it. The magnitude of the diference between imputed and

ACM Comput. Surv.



A Comprehensive Survey on Imputation of Missing Data in Internet of Things • 21

observed values may not be associated with the values from σ . Index of Agreement(d2) d2 represents the measure
of relative error between observed and imputed data values. The range of d2 lies between 0 and 1, that indicates
a lack of agreement and perfect agreement. d2 is analyzed using Eq. (11).

d2 = 1 −


∑N
i=1 (Pi −Oi )

2
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)
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Root Mean Square Error (RMSE) shows the mean error of the model through the diference between observed
and imputed concentration. Eq. (12) helps to compute RMSE.

RMSE =
1
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Mean Absolute Error (MAE) is mean the diference between observed and imputed data points, which is calculated
using Eq. (13). It makes the comparison of the more sensitive measure of residual error as RMSE.

MAE =
1

N

N
∑

i=1

| Pi −Oi | (4)

where, N represents the number of imputation, Oi and Pi are the observed and imputed data points, O and P
the average of observed and imputed data, σO and σP are the standard deviation of observed and imputed data.

6.2 Classification Accuracy

Classiication accuracy is one of the performance indicators to evaluate the imputation quality by some selected
classiiers trained by the imputed dataset. The classiiers train and test the classiication performance on the
imputed dataset, i.e., data without missing value. The results with higher classiication accuracy indicate better
imputation results. Various classiiers used for classiication in the imputed dataset are KNN, ANN, clustering,
SVM, MLP, etc. [75].

6.3 Computational Complexity

The computational complexity deines the number of resources required to run the algorithm. The cost associated
with the attributes increases along with the augmentation in computational complexity [166]. Every algorithm is
eicient in its scenarios; however, reliability is a tremendous concern due to the accuracy of prediction of the
missing value can be low in various circumstances, such as time, cost [166].
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Fig. 4. Illustration of (a) data generation and (b) data collection along with the computing platform in IoT, and (c) highlights

the diferent features along with the comparison of three computing platforms.
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7 COMPUTING PLATFORM

Recently, the majority of the imputation techniques are based on intelligent techniques. However, it also presents
severe challenges in terms of scalability, data processing, and computing resources, although these approaches
have contributed to developing imputation technology. To comprehend the current issues, it is necessary to
describe and examine available strategies for implementing imputation systems. Fig. 4 illustrate the various
computing platforms along with the features. Multiple computing platforms are highlighted below:

7.1 Cloud-Based Technique

The cloud computing platforms provide the computational and storage resources using remote servers, where
end-users deploying imputation solutions need to connect to them over the Internet to run algorithms to handle
missing data. The lexibility of the cloud infrastructures allows providers to dynamically alter storage and
compute capacity to meet end-users demands. The cloud techniques are ineicient for real-time applications due
to bandwidth, latency, and communication expenses. Aside from this, misconigured network traic hampers
the cloud-centric technique because of the enormous volume of data. Authors in [41] implemented imputation
using cloud-based tensor decomposition. Similarly, authors in [25] deployed a feature selection and cluster
analysis-based incomplete high-dimensional data imputation algorithm based on cloud. The results show that
the suggested approach for imputing high-dimensional data achieves improved imputation accuracy and requires
much less time than other algorithms.

7.2 Fog-Based Technique

Fog computing platforms are distributed computational models that perform data storage, computing, pre-
processing, and analysis in a layer between the cloud and the sensing devices. In this regard, the computing ability
of imputation is achieved near sensing devices, and clouds for the generation and handling of data [151]. Authors
in [13] implemented Fog-based imputation where the method provided eicient computational performances
with higher accuracy in a short time.

7.3 Edge-Based Technique

Edge computing refers to the decentralized computational infrastructure where data storage and computing
resources lie near or close to the base station or end-user. Edge computing helps in data processing at the
sensor allowing real-time response, which improves output while also speeding up data processing and reducing
bandwidth usage. Recently, there have been numerous attempts to design intelligent techniques that perform
imputation at the sensor nodes [6]. Guastella et al. [54] designed real-time imputation using edge-based technology.
The model shows augmentation in latency and execution time.

7.4 Hybrid Technique

The hybrid approach integrates several architectural models into one. A hybrid platform combines edge, fog, and
cloud, or any two of these layers. The information is processed in the source/sensor, while the remaining crucial
work is done in the cloud, fog, or mixed solution. When minimal computation costs are required, the algorithms
could be implemented on edge and/or in fog; conversely, when high computational costs are required, they could
be implemented in the cloud. Imputation using a hybrid platform of cloud and fog is deployed in [126].

8 SCOPE/ APPLICATION OF IMPUTATION TECHNIQUES IN IOT

This section discusses a variety of missing data applications in IoT. We examine each application area based on
the concept of missing data, the structure of data, challenges involved, and the existing approach implemented.
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8.1 Medical IoT

Internet of Medical Things (IoMT) refers to collecting medical equipment, devices, and applications that can
communicate in real-time or online using computer networks. Missing data in the IoMT domains usually
deal with patients’ records. IoMT depends on the data collected from such data acquisition tools, sensors, and
communication mediums. Medical data consists of categorical, spatial, and temporal aspects and contains various
features such as patient age, a test of the blood sugar level, monitoring of the electrocardiogram, heartbeat. Due
to various reasons such as human problems (attackers), hardware problems (network device and senors problem)
causes serious problems such as missing important information for continuation of those applications. Hence, the
strategy to recover the lost information is mandatory in ensuring IoMT systems perform accurately and correctly,
providing quality of service to the patient. The most tedious aspects of imputing the missing data in IoMT are
computational cost and quality data imputation. Various methods have been implemented to impute the missing
data in the medical area [143], [63].

8.2 Intelligent Transportation Systems (ITS)

The integration of communication and computation to control and monitor the transportation network is an
ITS. ITS consists of 4 major components, vehicle subsystem, station subsystem, monitoring system, and security
subsystem. All these consist of multiple sensors and actuators. The data generated and collected in ITS belongs
to spatiotemporal features, and provides real-time services such as travel time prediction, monitoring, traveler
information to enhance safety, mobility, and eiciency. Furthermore, ITS data is distinctive because of the drastic
changes in traic conditions, sudden speed drops, and time and space interval correlations with neighbors. The
łmissingnessž problem resulted from various factors, including failure of hardware/software, communication
issues, undermine the spatiotemporal data resulting from limiting the accuracy. Due to the explicit characteristics,
the imputation approach must be chosen cautiously to provide accurate and reliable data for ITS services. The
most tedious aspects of imputing the missing data in ITS are handling large datasets in real-time computational
cost and quality data imputation. Various approaches are implemented to impute missing data in ITS [29], [31],
[138], [21].

8.3 Environmental Monitoring Network (EMN)

EMN uses various sensing devices to monitor and control various aspects such as air pollution, pressure control
system, water quality, and distribution. Epidemiological studies, especially the health efects of water and
environmental air pollutants, are no more exception to having complete data. They possess missing data due
to data corruption, power outage, equipment failure, sampling error, human error, etc. Data collected by EMN
sensors belong to spatiotemporal data. Various challenges of missing environmental data include signiicant bias
in the system and eiciency degradation, making analysis more complicated. A wide range of research has been
conducted to impute the missing data in the environmental and water datasets [2], [60], [102], [108].

8.4 Energy Management System (EMS)

A computer system that automates the monitoring and controlling of associated electromechanical infrastructure
consuming a huge amount of energy. Data collected from various sensing devices such as sensors, electricity
meters, thermometers are delivered to EMS to monitor and control multiple electromechanical devices such as
electric power transmission, air conditioners, and related energy-saving devices. Environmental factors, low
quality or unstable network connections, unreliable communication infrastructure hinders the data collection
procedures resulting in incomplete data in EMS. The most tedious aspects of imputing the missing data in EMS are
handling large datasets in real-time to address the computational cost, complexity, and quality data imputation.
Various approaches have been used to recover the lost information [44], [149], [67], [80].
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8.5 Education

Eiciency of the education system depends on the IoT where data can be collected through Massive Open
Online Course using mobile devices, and intelligent analytical techniques can be used to interpret and predict
learners’ achievement and progress. Data from educational institutions are being used for a wide range of
analyses, including improving the educational system and supporting economic decisions. However, due to the
structure of the data collection procedure, similar data frequently possesses non-negligible shares of incomplete
values, invalidating the above operations. Hence, incomplete information needs to be reconstructed optimally by
imputing data of similar nature. Bruni et al. [24] designed an imputation method based on the integration of
average and linear regression using a donor for partial numerical sequence reconstruction. The optimal solutions
were searched for preserving the global data attributes.

8.6 Others

The industries have undergone signiicant changes to increase productivity that follow four elements: transporta-
tion, sensing, processing, and communication. Industrial automation is only possible when IoT is deployed in
industrial design to monitor and control the production machines’ functionality, operation, and productivity. For
eiciency and quality, the decision-making procedure [79] used various approaches to impute missing data in the
industrial sector.
In recent years, sports analytics have been emerging swiftly. This plays a vital role in conducting a competitive
advantage for players and a team. Analytics and predictions in sports are also essential to track the players’
performance, behavior, etc. Various activity recognition using intelligent techniques and IoT are investigated in
multiple sports [61]. Imputation in physical activity datasets (accelerometer generated datasets) is implemented
by Stephens et al. [136].
The presence of the missing data deprives IoT undertake smart decisions and analysis. All the IoT domains

and applications sufer from the missing data problem. However, very few applications have only addressed the
imputation of the missing data, though the analysis has been performed in all applications. This shows that IoT
lacks quality decision and analysis in multiple applications.

9 DISCUSSION

Due to multiple reasons such as aging sensor, meteorological extremities, network attacks, device failure, and
human error, all the sensor-generated datasets contain missing data. Hence, before undergoing analysis or taking
a decision, it is crucial to address the missing data issue. However, most literature in the IoT domain does not
acknowledge the missing data before performing analysis. This shows that either the missing data have been
deleted or do not contain the missing value. The latter case is almost impossible, which strongly supports the
assumption of missing data. Because various factors inluence the imputation results, which makes the selection of
the appropriate techniques more challenging. Such factors include detection, mechanism, pattern, and distribution
of the data, various features present in the dataset, the assumption used, imputation methods, analysis model,
number of the missing gap and values, sample size and software used. Due to this, various research persists
involving commonly used imputation, such as mean imputation and deletion methods, not testing the assumptions
assumed, not describing the approach used in dealing with missing data, ignoring sensitivity tests [75]. Deploying
imputation algorithm in the computing platform, Edge/Fog is used for real-time and near real-time imputation,
suitable for point and short missing gap problems due to dependency in the historical dataset. The high missing
gap of the accumulated data is better estimated through a cloud-based platform. Hence, it is essential to perform
imputation on a historical dataset prior to real-time based imputation for the accurate and reliable prediction.

Generally, deletion approaches are used when there is less than 5% of the missing data, under the assumption
that loss of power and biases are probable to be inconsequential. However, it is strongly recommended to
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implement imputation to preserve data structure and save information. For example, in time series analysis,
the sequential structure is broken, creating complications such as determining the seasonal pattern because
deletion can result in unethical selection bias and poor performance. The only solution to address missing data is
imputation which requires special attention as the imputation approach alters the data distribution, it has an
impact on the optimization problem’s solution. Similarly, imputations would be insuicient [17] based on the
following:

• When the prediction models are able to de-impute using certainty leading to consistent/ compatible
predictions.
• Missing data in training and testing data should be imputed with the same approach.
• Missingness should be represented as a diferent class for discrete or categorical variables, and mean
imputation can produce compatible predictions for continuous variables.
• The missing mechanism should be investigated and while dealing with various patterns of missing data in
testing and training, also called "distributional shifts," remains an open research question.

9.1 Selection of Appropriate Method in IoT

There are two datasets for performing imputations: publicly available datasets and real-world datasets. Based on
the features available, IoT datasets possesses numerical, categorical or mixed characteristics. The performance of
the imputation algorithm difers based on the dataset used, missing gaps, and the missingness mechanism. In
IoT, all the missing mechanisms (MCAR, MAR and MNAR) can occur depending upon the scenario. Most of the
literature considers only one mechanism to perform the simulation, which is not enough to comprehend the
performance of the speciic approach. Feature selection before imputation can help achieve better imputation
results, whereas after imputation help classiiers perform better compared to early feature selection. There is
no exact rule to claim the practical missing rates to be implemented, however, imputations of missing data on
high missing rate with diferent missing gaps (60%), very/ high missing gap (e.g. continuous missing gap of
21%), a broad range of missing rate (e.g. 5% to 60%), a mixture of high missing gap and high missing rate, is
considered more practical in IoT. Such simulations require complex imputation methods to address the missing
gap. Most of the data generated by IoT belongs to time-series, imputation can be performed both by time-series
and pattern-based approaches. It is to be noted that the pattern-based methods can handle time-series datasets;
however, sometimes, it might lead to a decrease in the accuracy of the predicted models. The decision to use a
time-series or pattern-based method in time-series dataset depends on the missing gap and missing ratio present
in the dataset. When the missing gap is low, time-series imputation techniques might handle the case eiciently.
If the missing gap and missing ratio are high, then the pattern-based method performs better. Similarly, in the
presence of a very high missing gap, integration of time-series and pattern-based method gives better results.
However, one should be cautious in using the imputation model because the wrong imputation leads to anomalies
in the data.

There exist numerous imputation techniques which are classiied as statistical and intelligent learning-based
approaches. The previous section highlights various approaches regarding those imputations. However, to date,
there is no comparison between those techniques based on multiple mechanisms containing various missing
gaps and missing rates in multiple domain datasets. Similarly, multiple performance indicators such as direct
evaluation, classiication accuracy, and computational complexities are used to validate the performance of the
imputation approach. However, most studies only perform one or two indicators to evaluate the imputation
techniques, which lacks the understanding to provide a better imputation strategy. Such limitations prohibit
determining the best appropriate techniques for domain-based imputation techniques.

9.1.1 Selection of Statistical Techniques. The adoption of SI is computationally simple, fast, inexpensive, and
requires less memory thanMI. In the meantime, it is problematic because it creates substantial bias, underestimates
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variance, uncertainty, standard error, a correlation between variables gets afected, analysis becomes more
sensitive, etc. In the presence of point and short missing gap, SI provides better results compared to MI [100],
[60], [59]. However, when the gap increases, accuracy decreases. Authors claim that MI performs better than
SI [60], [59]. MI analyses many imputation samples to take the uncertainty of imputed values into account,
properly amends the major disadvantages and retains the advantages of SI through the addition of error based
on variation in estimating a parameter across imputation known as "between imputation error" [131]. Thus, MI
is computationally complex and expensive (computational cost scales linearly as a function of the number of
imputations to be performed) and is considered the advanced version of SI with the uncertainty of the imputed
values taken into account.

Selection between MT and IT is tedious as both are based on the likelihood function. MT is relatively faster
and computationally simple compared with IT [40]. Despite the various beneits of MT, IT is still attractive and
widespread over the MT-based methods due to computational lexibilities, such as many models can it/ estimate
the data after imputation. Fitting models after imputation does not require repeated actions. Auxiliary variables
can easily be included in the IT methods than in MT-based methods. On handling the categorical variables, IT
methods perform better than MT-based methods. The comparison between various MT and IT-based techniques
shows that MLI techniques are superior [78], [92]. Similar results were demonstrated in [7], [23]. Yet, some
research results show that IT and MLI-based methods are equivalent [40], [51]. The MLI-based method is a better
choice when the data analysts are clear about the parameter to be estimated as they do not need to introduce
randomness on data. Nonetheless, MT is also a better choice if the data analysts are clear about the relationship
between the data and the imputation model.

9.1.2 Selection of Intelligent Techniques. In the speciic case of classiication, learning from the data containing
missing values becomes more crucial. Due to the presence of missing data, most classiication algorithms can
not work directly. Intelligent imputation techniques are the most sophisticated procedures, consisting of the
generation of the predictive models to estimate the value to replace the missing value. It is performed by using
the training and testing of the datasets through modeling the incomplete data estimation based on the available
information in the datasets. It is essential to train a classiier utilizing the imputed training set. Missing values
in either testing or training set or both sets afect the prediction accuracy of the learned classiier. Handling of
missing data using intelligent techniques, two scenarios get distinguished:

• Complete training datasets, missing value in test data.
• Both test and training datasets contain a missing value.

In the irst case, training datasets are complete; thus, no assumptions are made in the training datasets. Thus, it
relects that either missing values are excluded from the datasets, or missing value has been imputed using some
estimations. This is often essential to enable training models. In the second case, the testing and training datasets
are gathered and processed similarly, and the classiier is trained considering incomplete input vectors.

Intelligence-based techniques are more computationally complex and expensive than statistical (or statistics)-
based approaches [147]. The cost of intelligent techniques increases with the training and testing of datasets, and
the formation of clusters or hidden networks [147]. In intelligent-based techniques, deep learning techniques
possess higher computational complexity than the simpler machine learning-based approaches. Novel techniques
adopt more complex procedures that require high computational efort; yet, the eiciency and quality of the
imputation increases. Though intelligent techniques are computationally complex, they are the irst choice
because of the eicient results. However, one should be aware about the missing gaps and mechanism because
on the presence of point and 3/4 missing gap, methods such as interpolation or nearest neighbor performs better
than others.
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10 RESEARCH CHALLENGES, OPEN ISSUES, AND NEW PERSPECTIVES

After highlighting numerous imputation strategies and discussions, it is important to discuss various issues,
challenges, and new perspectives to improve the imputation technology in IoT domains. In IoT systems, the
imputation of missing data opens up a wide range of options, presenting practical implementation, challenges,
and issues. Integration of Cloud-Fog-Edge environment with intelligent techniques generates huge potentials to
intrigue the researcher and analyst. Apart, it also demands computational power, which contrasts sharply with
the signiicant hardware and software limits of IoT sensors.

10.1 Research Challenges and Open Issues

10.1.1 Essence of Real-life Datasets: There lacks public standard and real-world data sets essential for the
imputation approach to assess the eicacy and reliability of new technologies.

10.1.2 Robust Imputation Techniques: Deployment of intelligent techniques in the hardware/ sensor nodes
require high performance computing services. Thus, more robust, eicient, and reliable algorithms based on
various computing platforms for handling the incomplete dataset is of crucial requirement.

10.1.3 Power Eficiency: Sensing devices are operated through battery or are dependent on energy-harvesting,
creating a limitation of power. Similarly, it is tedious to obtain the optimal trade-of between energy consumption
and algorithmic complexity in edge-enabled devices. Imputation in real-time requires high energy consumption
in sensing devices due to where power drainage and memory limitations. Thus, eicient energy remains a hugely
unsolved issue.

10.1.4 Accuracy and Reliability: There exist multiple strategies for imputing the missing data, however, reliability
and accuracy of the imputed data remain as challenges. As the missing gap and amount increase, imputed data
become unreliable, and consequently, the accuracy and reliability of the data degrade. Sometimes, accuracy is
obtained through high computational cost and processing time. Intelligent techniques and multiple imputations
help to achieve accuracy and reliability.

10.1.5 Architectural Design: Traditional imputation techniques are not designed to operate in the sensor system,
especially because of their restricted connectivity, memory, and processing ability. The majority of existing
architectures are incapable of handling real-time imputation. Real-time design components must integrate
application and analytics to present a new approach to a working environment that meets the accuracy and quick
response needs. Such architectural diiculties will be addressed by combining various data technologies with
intelligent learning strategies that are lexible to adapt to architectural changes, such as switching from edge
to cloud or vice versa, which is a tedious task. Managing resources dynamically is crucial, however, diversity
and heterogeneity of frameworks and limitations of the edge components lack application of IoT and computing
services ofer considerable open challenges and issues.

10.1.6 Computational Cost and Complexity reduction: The computational complexity deines the number of
resources required to run the algorithm. The cost associated with the attributes increases along with the augmen-
tation in computational complexity [166]. Novel techniques adopt more complex and computational eforts for
improving accuracy and eiciency by addressing various issues and challenges. Implementing Cloud/Fog/Edge
will alleviate the computational complexity and cost by adding parallel and distributed processing.

10.1.7 Real-time Vs Ofline Imputation: Eicient and reliable imputation on real-time and streaming data poses
an emerging essence due to the enhancement of complex sensor-based systems and IoT. The advancement
of software, hardware, and computing resources allows real-time applications to handle streaming data and
demanding constraints. Shifting from conventional oline data processing and analytic to real-time methods
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is a result of this circumstance. Real-time processing has restricted computational resources as well as time
limits for producing a solution. In addition, the input data must be examined upon its arrival for further real-
time processing. Real-time techniques can be adapted based on historical measurements (short-term memory),
windowing, frequent model updating, etc. Oline processing, on the other hand, is involved in evaluating the
entire dataset, where all the necessary data has been collected and is readily available. Because there exist no
time or computational limits (assuming the computation takes place in a capable environment like the Cloud),
this technique usually enables high-complexity approaches to be used.
Algorithms, whether online or oline, must be used according to system requirements. When dealing with

IoT data, near-real-time or real-time approaches are better. When additional data is available and an immediate
response is not required, oline algorithms enable the execution of more complex jobs on vigorous resources. On
creating and implementing these algorithms, trade-ofs among processing time, computational cost and energy,
response time, and performance must be considered.

10.1.8 Sensitivity Analysis: The sensitivity analysis study determines how the uncertainty in the output model
might be attributed to various sources of uncertainty in the input model. Supplementary conditions on the reasons
for incomplete data are made during analysis, though these assumptions cannot be validated for correctness.
MAR approach is based on a pattern mixture model, the mixture of distribution of the missing response, and
distribution of the observed response [158]. Though the emphasis is on IT, the standard error can be corrected
using a single imputed data set for a limited set of variables such as correlation coeicients, means, and proportion.
A method for computing correct standard error is known as the Jackknife method is proposed in [12].

10.1.9 Proper Imputation Model: The models can be classiied into an ignorable or non-ignorable models. The
missing data mechanism is ignorable if a) data are MAR, b) parameters guiding the missing data process are
not related to the parameter to be estimated. There is no direct proof in the data to address the accuracy of
any such assumptions, a good reason to consider several models and explore resultant sensitivity wherever
possible. Treating MAR and ignorability as equivalent also work, but that could be done better by modeling the
missing data mechanism. When data are in NMAR, it is said the mechanism of missing data is non-ignorable. In
this situation, to get a reasonable estimate of the parameter of interest, we model the missing data mechanism.
The imputation model should contain two assets: First, the imputation model should contain useful variables
where chances of increasing the variance of estimates or leading to non-convergence increases while including
too many variables. Generally, three kinds of variables are included in the imputation model [118]: a) variables
having theoretical importance, b) variables with missing data mechanism, c) variable correlating with a variable
having missing data. Second, the imputation model should be universal enough to preserve the consequences
of concerns in the data structure. However, it is not necessary to have a fundamental scientiic theory on the
imputation model [7]. When the imputation model is more restrictive than the analysis model [40], one of the
two consequences might occur. The irst consequence is that when additional restrictions are true, the results are
valid, but the conclusion is conservative, failing to reject the false null hypothesis. The second consequence is
when one or more restrictions are not reasonable. The results are invalid, restricting the relationship between
a variable and another variable in the imputation model. Therefore, the consequences of any interaction that
associate at least three variables will be biased toward zero.

10.2 New Perspectives

Recently, many researchers have focused on implementing imputation strategies in various IoT applications for
real-time monitoring and automation of the system, which helps improve the quality of the data essential for
better decision-making. In this subsection, we highlight some of the new perspectives in the imputation of the
incomplete data.
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10.2.1 Edge Based Computing: Incomplete data in IoT applications require real-time monitoring with fast
response time and quick processing. The promising solution for handling incomplete data lies in edge computing
and the integration of intelligent techniques. Using edge computing, incomplete data handling takes place at
the sensor node, and the decisions are transmitted to the server. This helps to reduce the data transmission, and
power consumption is low, however, efective optimization strategies are essential to sustain the longevity of
the edge devices. Ivan et al. [83] implemented a framework for edge management to recover the missing values
using limited resources for accurate decision making.

10.2.2 Visualization: Visualization of handling missing data helps analysts draw decisions regarding the quality
of the data and the efective reasoning essential for drawing conclusions. Processed and analyzed data provides
clear insights on using the visualizations approach of the data, whereas incomplete data produces the biggest
challenges. In designing incomplete data visualization, multiple visualization strategies ranging from simple line
graphs, bar charts to 2D and 3D are used. Visualizing the incomplete and imputed data also helps an analyst reduce
the biasness, strengthen the data quality, perceived conidence, and accuracy. Song and Szair [132] implemented
visualization technique. The obtained results show that visualization of the imputed data points achieved the
highest data quality and conidence in preserving the continuity of the data.

10.2.3 Deep Reinforcement Learning (DRL):. Reinforcement Learning (RL) is an emerging topic in ML where
agents discover appropriate actions to maximize a reward in a given environment. Intelligence to RL agents is
integrated with the DL to enhance the ability to optimize, making it proicient in solving complex computational
tasks, such as the complex pattern of the missing data, known as DRL [144]. Huang et al. [58] deployed DRL
in the handling of incomplete data proving its eiciency and reliability. DRL is a promising technique showing
opportunities to handle incomplete data eiciently and efectively.

10.2.4 Deep Ensemble Learning: Ensemble strategy is the fusion of multiple trainedmodels integrating predictions
to enhance the performance of the single model. These meta-algorithms are promising on decreasing bias
(boosting), or variance(bagging), or augmenting predictions (stacking). Generally, ensembles methods are used
when there exists multiple missing data assumptions Integration of ensemble and DL forms deep ensemble
learning. Sun et al.[137] designed an online framework using an ensemble-learning strategy for the imputation
of data in an ofshore wind farm. The method performed eiciently, efectively using less computational time.

10.2.5 Imputation using Explainable Artificial Intelligence: Explainable models are deployed in AI to assure
accountability, trustworthiness, and transparency. The quality of the data and the algorithm implemented
determine the accuracy and reliability of the explanations. The inevitability of the missing data that exist in
real-world datasets afects the quality of the explanations. Ahmed et al. [4] explores various cases on dealing
with the explainable AI on the handling of missing dataset.

11 CONCLUSION

This paper investigates various reasons for missing data in IoT architecture, classifying the various imputation
techniques and their advantages and shortcomings. Numerous applications of IoT where imputation algorithms
can be implemented were highlighted. Multiple computing platforms based on the architectural model for
handling missing data were discussed in brief. To ensure the precise decision-making of intelligent systems, it is
essential to deal with the missing data timely. Before applying any imputation techniques, one should make the
best efort to know the reason for missing and prevent minimum in number by designing and implementing
intelligent tools during data collection. Similarly, diferent open issues and challenges related to the imputation
techniques and selection for appropriate imputation methods in the IoT area were also addressed. Finally, some
future research directions to overcome the limitations of imputation techniques and enhance the adoption of
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imputation techniques in the real-world context based on low energy consumptions, scalability, easy deployment,
and decentralization were also suggested.
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