
 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1111/agec.12417. 

 

This article is protected by copyright. All rights reserved. 

 

Spatial Dependency and Technical Efficiency: An Application of a Bayesian Stochastic Frontier 

Model to Irrigated and Rainfed Rice Farmers in Bohol, Philippines 

 

 

Valerien O. Pede1, Francisco J. Areal2, Alphonse Singbo3, Justin McKinley1,4, and Kei Kajisa5 

 

 

1International Rice Research Institute (IRRI), DAPO Box 7777, Metro Manila 1301, Philippines 

2School of Agriculture, Policy and Development, University of Reading, Whiteknights, PO Box 237, 

Reading, RG6 6AR UK 

3International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 320, Bamako, Mali 

4Monash University, Clayton, Australia 

5Aoyama Gakuin University, 4-4-25 Shibuya, Tokyo, Japan 

 

 

Corresponding author: 

Valerien O. Pede, PhD 

Senior Agricultural Economist 

Agri-food Policy Platform 

International Rice Research Institute 

DAPO Box 7777 

Metro Manila, Philippines 

Ph: +63 2 580 5600 (ext. 2721) 

Email: v.pede@irri.org 

 

 

https://doi.org/10.1111/agec.12417
https://doi.org/10.1111/agec.12417
https://doi.org/10.1111/agec.12417
mailto:v.pede@irri.org
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fagec.12417&domain=pdf&date_stamp=2018-03-30


 

 

 
This article is protected by copyright. All rights reserved. 

 
 

Abstract 

We investigated the role of spatial dependency in the technical efficiency estimates of rice farmers 

using panel data from the Central Visayan island of Bohol in the Philippines. Household-level data 

were collected from irrigated and rainfed agroecosystems. In each ecosystem, the geographical 

information on residential and farm-plot neighborhood structures was recorded to compare 

household-level spatial dependency among four types of neighborhoods. A Bayesian stochastic 

frontier approach that integrates spatial dependency was used to address the effects of 

neighborhood structures on farmers’ performance. Incorporating the spatial dimension into the 

neighborhood structures allowed for identification of the relationships between spatial dependency 

and technical efficiency through comparison with non-spatial models. The neighborhood structure at 

the residence and plot levels were defined with a spatial weight matrix where cut-off distances 

ranged from 100m to 1,000m. We found that spatial dependency exists at the residential and plot 

levels and is stronger for irrigated farms than rainfed farms. We also found that technical inefficiency 

levels decrease as spatial effects are more taken into account. Because the spatial effects increase 

with a shorter network distance, the decreasing technical inefficiency implies that the unobserved 

inefficiencies can be explained better by considering small networks of relatively close farmers over 

large networks of distant farmers.  

 

Keywords: Rice farming, Spatial dependency, Bayesian approach, Efficiency 

 

1. Introduction 

Numerous attempts have been made to measure technical efficiency (TE) and other efficiency estimates in 

farming (Idiong 2007; Michler and Shively 2014; Karagiannis and Tzouvelekas 2009; Alvarez 2004; 

Quilty et al. 2014; Balde et al. 2014; Hossain and Rahman 2012; Coelli and Battese 1996); to this end, 
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one of the common econometric approaches is the stochastic frontier analysis (Aigner et al.1977; 

Meeusen and van den Broeck 1977). Previous studies have contributed to the understanding of how 

large TE is; how different TE levels are among individual farmers; and what are the factors that 

underlie the differences. These studies generated useful policy implications for efficient farming, 

especially in developing countries where wide productivity variations have been observed. Despite 

the aforementioned research, spatial dependency among farmers has yet to be adequately analyzed. 

Farrell (1957) expressed concerns about spatial factors such as how climate and location influence 

efficiency. Although the concerns existed at the time, the econometric techniques required to 

complete such an analysis were not available during the time of Farrell’s research. The importance of 

making use of spatial information in agricultural economics, and in particular the little attention 

payed to spatial autocorrelation in land use data has still been highlighted in more recent times 

(Bockstael, 1996). 

Recent developments in spatial econometrics have made it possible to observe the spatial 

effects in the stochastic frontier analysis (Areal et al. 2012; Glass et al. 2013; Glass et al. 2014; Glass 

et al. 2015; Tsionas and Michaelides 2015; Anselin 1988). Furthermore, Druska and Horrace (2004) 

extended the estimator presented by Kelejian and Prucha (1999) and applied it to a stochastic 

frontier model for the panel data of 171 Indonesian rice farmers. Another innovation in this area was 

the adoption of the Bayesian paradigm in the estimation procedure (Schmidt et al. 2008). With this 

approach, Koop and Steel (2001) and Kumbhakar and Tsionas (2005) investigated geographical 

variations of outputs and farm productivity for 370 municipalities in Brazil. Similarly, Areal et al. 

(2012) also investigated the spatial dependence of 215 dairy farms in England at a 10 km grid-square 

level using the Bayesian paradigm. All these studies have used a meso-level data to measure the 

spatial distribution of farmers. 

Although these meso-level studies are valuable in recognizing the importance of spatial 

dependency in agriculture, important questions surrounding this topic remain unanswered. To 
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illustrate, one unanswered question is how and through what kinds of networks the spatial 

dependency of TE shows up at the farm level.  

The purpose of this paper is to investigate the role of spatial dependency in TE, using unique 

micro-level farm panel data from individual rice farmers in Bohol, Philippines. We aim to identify the 

types of networks in which spatial dependency arises in TE. The data were collected for four 

consecutive rice growing seasons from 2009 to 2011, coupled with detailed geographical 

information to capture different kinds of networks among sample farmers. This data set allowed us 

to compare spatial dependency among two separate neighborhood structures (residential 

neighborhood and farm plot neighborhood) in two different agro-ecosystem (irrigated and rainfed 

ecosystems). Taking advantage of the panel data structure, analyses were performed following a 

one-step procedure as described in Areal et al. (2012), which integrates spatial dependency into the 

stochastic frontier analysis with a Bayesian estimation approach. The rest of the article is organized 

as follows. The next section provides some background information about the major characteristics 

of the two rice farming systems in Bohol. Section 3 presents the empirical model used to estimate 

the technical efficiency and the endogenous spatial effect of rice farming technical efficiency. 

Section 4 describes the data-set used in this study. Section 5 presents the estimation results and 

discussions. Section 6 concludes and derives policy implications for rice farming productivity in 

Philippines. 

 

Rice Farming in Bohol 

Rice production in Bohol consists of two agroecosystems: irrigated and rainfed farming. The 

Bohol Irrigation System (BIS) started its operation in 2009, currently spans 14 villages in three 

municipalities, and is expected to service as many as 4,104 hectares in the future (JICA 2012). The 

BIS works through a gravity irrigation system composed of a reservoir dam, a main canal, secondary 

canals and laterals, turnouts, and farm ditches. Most of the farmers in the project site converted 
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their rainfed plots to irrigated plots as long as their plots were accessible to the irrigation facilities. 

Our sample famers were randomly taken from these irrigated famers. The rainfed sample farmers 

were randomly taken from adjacent villages that have similar cultural and climatic background 

(Figure 1). Rainfed rice farming is conducted in a traditonal manner with moderate use of modern 

inputs and little use of machineries. The same scenario applied to the irrigated area until the start of 

irrigation in 2009. 

 

Fig. 1. Location of study sites designated by ecosystem. 

 

Farmers in the irrigated area must form a water users group. A group consisting of 20 

individual farmers on average and its members rely on the same intake gate on a canal and thus 

share irrigation water with each other. Since the location and the water supply capacity of each 
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intake gate is determined by the capacity of the canal and the topography of the area, the size and 

composition of the water users group is basically determined exogenously. In addition, our field 

observation tells us that no farmer exchanged their plots in order to move to a particular water user 

group. This means that there is no self-selection behavior in the formation of the water user group.  

Member farmers are expected to pay an irrigation service fee equivalent to 150 kg of paddy 

per hectare per season to the National Irriagtion Administration (NIA).1 The members of the water 

users group are expected to manage local irrigation facilities collectively. Since they share irrigation 

water, the synchronization of farming practices is needed among them. Meanwhile, rice farming 

under rainfed conditions is conducted more independently. In this regard, the opportunities for 

networking are more frequent, and the demand for strict coordination is higher among irrigated 

farmers than rainfed farmers.  

In the study site, rice is the dominant crop and is cultivated twice a year. The Bohol Island 

belongs to a climatic area characterized by even rainfall distribution throughout the year. During our 

survey period of four agricultural seasons in two years (2009–2011), our study site experienced two 

weather shocks: severe drought in the second season and flood in the fourth season. Furthermore, 

rainfed areas suffered directly from these variations. Meanwhile, the water supply condition among 

irrigated farmers was mitigated by the irrigation system, to some extent. Hence, the irrigated 

farmers suffered fewer water shortages in the second season than the rainfed farmers. Since the BIS 

has no drainage system, all the famers suffered flood in the fourth season.  

A notable feature of the study site, which is important in network analyses, is that the places 

of residence are relatively scattered over a wide geographical area; although we can still find the 

center of a village where residences and small businesses are concentrated. Hence, the data 

presented in this study has wide geographical variations in residential networks, which is different 

                                                           
1
 With a market price of Php 14-20 per kg, the 150 kg of paddy is equivalent to about Php 2,500-3,000. As of 

February 2017 1USD=49.7 Php.  
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from another type of common residential pattern in which residents are highly concentrated in a 

particular place.  

 

2. Modeling 

Since the seminal works of Aigner et al. (1977) and Meeusen and van der Broeck (1977), the 

stochastic frontier approach (SFA) has become the most commonly used method of modeling the 

production and measure efficiency of farm-level data. The SFA approach estimates the parametric 

form of a production function and recognizes the presence of two random error terms in the data. 

One component of the error term reflects the inefficiency in production while the other component 

represents the random effects outside of the producer’s control. The production frontier itself is 

stochastic since it varies randomly across farms due to the presence of the random error 

component. Following the model proposed by Areal et al. (2012), the stochastic frontier production 

function for a balanced panel data assuming efficiency is constant over time2 is defined as3: 

 

                                                           
2
 This is not an uncommon assumption to make especially when the time series is relatively short as in this 

case (2 years).  

3
 A specification including time and its interactions was estimated but no significant time effects were found. A 

referee has noted that the model does not include heteroscedasticity terms. This is an area that has not been 

explored within this context. We have run the non-spatial model and extracted the errors and the inefficiency 

terms. However, there is not a prior reason to believe that allowing for heteroscedasticity would make it 

necessarily a better model. We have conducted a Levene’s test on the errors to test whether the variance 

changes through the periods. We found that the variance for year 2 is actually different (p-value<0.05), but the 

standard deviations for the years are not very different in absolute values: Year 1: 0.246; year 2: 0.306; year 3: 

0.230; year 4: 0.239 
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                             (1) 

 

where     denotes the production of farm   (         )  at season   (       ) with    ;     

represents a (   )    matrix of inputs of production;      is a     matrix of non-stochastic 

environmental variables (farmer’s level of education, household size, household head, being a 

female, remittance), associated with the  th farm at the  th observation (farm-specific variables);     

is a   (   ) matrix of dummy variables for periods 2 to 4;  ,   and   are a       and a     

vectors of unknown parameters to be estimated;     is the random error, and    represents the 

inefficiency of the  th farm. Stacking all variables into matrices we obtain: 

 

             (    )              (2) 

 

where the inefficiency term in the standard efficiency analysis usually assume   to follow an 

exponential of half-Normal distribution. However,   can be made spatially dependent by defining it 

as: 

 

       ̃            (3) 

 

where   is a weight matrix;   is the spatial coefficient, which is assumed to be between 0 and 1; 

and   and  ̃ are latent variables whose distributional form is unknown. In the context of farming, 

    captures the effects of shocks spreading among neighboring farmers through similarity in 

socio-economic, agro-ecological, and institutional backgrounds of the group defined by W.  
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Estimation of spatial models requires specification for the spatial structure of observation 

units considered in the study. As such, a distance-based weight matrix, W, of a Boolean type with 

elements wij was defined as follows4: 

        (
    

 

  )            (4) 

 

where     is the distance in km between the residence/farm location   and the residence/farm 

location  ;   is the distance from the residence/farm where spatial dependence may be relevant, i.e., 

the cut-off point of spatial dependence. Finding the appropriate cut-off distance is an empirical issue 

(Roe et al. 2002) that is commonly dealt with by estimating the spatial model using different cutoff 

distances (Bell and Bockstael 2000; Roe et al. 2002; Kim et al. 2003; Areal et al. 2012; Areal and 

Riesgo 2014). 

Therefore, we use two types of Bayesian models, one standard SFA (non-spatial) and spatial 

models (with cut-off distance ranging from 100m to 1,000m), which allow for an investigation of the 

relationship between spatial dependency and efficiency under different farm environments. Results 

from the non-spatial model and the spatial model with the highest spatial dependency are compared 

as follows. Once the farm efficiency estimates from both models are obtained, the efficiency 

percentage change between the spatial and non-spatial model is calculated per household and farm 

environment (residential or farm plot). This allows us to explore how much accounting for spatial 

dependency can help in explaining efficiency. If the area used to determine the neighborhood is 

relatively large, we may find spatial dependence; however this may not help in explaining efficiency. 

The same would occur if certain spatial effects that were accounted for are not relevant in explaining 

inefficiency, i.e., the spatial models in this case would be underperforming compared with the non-

spatial models. Having found spatial dependency, a farm with a positive percentage change in their 

efficiency level would indicate that such farm’s efficiency level would have been underestimated 

                                                           
4
 The weight matrix W is of dimension N x N and has 0 as diagonal elements. 
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under the non-spatial approach (i.e. positive aspects such as sharing information that make farms 

more efficient were not taken into account). We would expect this to be the case of farms that work 

closely and share knowledge under similar environment. On the other hand, we may expect farms 

that work more independently to show lower levels of spatial dependence; and no or small 

percentage changes in cases where the spatial model matches the performance of the non-spatial 

model or even negative percentage change in cases where the non-spatial model outperforms the 

spatial models.   

A translog functional form was chosen for the stochastic frontier production analysis. To 

explain, the translog is a flexible functional form that can be viewed as a second-order Taylor 

expansion in logarithms of any function of unknown form. Unlike the Cobb-Douglas function, it 

imposes no restriction a priori on the elasticities of substitution between inputs and outputs. As 

mentioned above, some non-stochastic environmental variables were incorporated directly into the 

non-stochastic component of the production frontier accounting for changes in the production level. 

5 

                                                           
5
 There are two general approaches to incorporate non-stochastic environmental variables into technical 

efficiency analysis (Coelli et al. 2005). The first, the one used here, is to incorporate them in the non-stochastic 

part of the frontier model whereas the second approach incorporates them into the stochastic component of 

the production frontier (Kumbhakar, Gish and McGukin 1991). We have decided to use the first approach to 

distinguish between observed information, which is included in the production side and non-observed 

information (spatial aspects) into the stochastic part of the frontier. However, following the suggestion of a 

reviewer we also conducted the second approach in which Education, Size, Gender and Remittance are 

removed from the non-stochastic part and are used in a second stage as explanatory variables for the 

estimated efficiency. The coefficient estimates of the non-stochastic part are similar. Regarding the 

explanatory variables for efficiency, Education was found to be associated with higher levels of efficiency in all 

cases whereas Remittance was found to be associated with lower levels of efficiency (i.e. farmers recipients of 
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Thus, the variable, Education, was included and consists of the years of formal schooling of 

the primary decision-maker of the household; the variable Size, which is the total number of people 

living in the household; Gender, a binary variable taking a value of one when the household head is 

female; and Remittance consisting of the ratio of remittance as it relates to total household income. 

The first three variables capture the human capital endowment of the sample farmer: education for 

quality, size for amount, and the gender for advantage or disadvantage of female head. Educated 

farmers are generally assumed to have better farming capacity and access to information; therefore, 

they are more productive (Battese and Coelli 1995). The amount of remittance indicates that 

farmers have alternative income sources other than rice farming. Hence, we hypothesize that 

remittance, which captures an unimportance of rice farming, has a negative effect on production 

levels. 

The data for all inputs and outputs are normalized by their respective geometric means prior 

to estimation. This makes the model’s parameter estimates directly interpretable as elasticities that 

are evaluated at the geometric mean of the data. To cope with the great number of zero 

observations for fertilizer inputs, the procedure proposed by Battese (1997) was followed. The 

original variable for fertilizer was replaced with    
     (   

     
 ), where    

  is a dummy variable 

defined by    
    if    

    and    
    if    

   . Thus, the final estimable form of the translog 

stochastic production function becomes: 

 

         ∑     (   
 )  

 

  ∑ ∑      (   
 )   (   

 
)        

                           

                          ∑     
 
          (5) 

Where   is the output,   is a time index (       ),   and   are the inputs, and   ,   ,    ,   ,   , 

             are the parameters to be estimated. The symmetry property was imposed by 

                                                                                                                                                                                     
relatively larger amounts of remittances were found to be less efficient than those receiving lower amounts of 

remittances). These results can be found in the Appendix. 
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restricting        . The    are farm specific inefficiency terms as defined above. The estimation 

was conducted using a Bayesian approach that integrates the latent distributions of   and  ̃ into the 

estimation process as defined in Equation 3 (Areal et al. 2012). Thus, a standard form for the 

conditional likelihood function was assumed in efficiency analysis with a spatial component added 

to: 

   (          
    ̃)  ∏

 
 
 

(  )
 
 

   (  
   

 
) 

    (6) 

By re-parameterizing  ̃  [  (    )   ̃   ],        the expression for the conditional 

likelihood function was obtained: 

 (          
    ̃)   

  

     ( 
 

 
( ̃    ) ( ̃    ))  (7) 

The prior distribution for the parameters       
    ̃   are an independent Normal-Gamma prior for 

  and  ; the prior for   
   is assumed to be Gamma with parameters 2 and     (  ), where    is the 

median of the prior distribution, and the conditional distribution for  ̃ is:  

 ( ̃      
  )  

 ̃ 
   

  
 
 ( )

    (   
   ̃ )  (8) 

where  ( ) is the Gamma function with parameter    , which is commonly used in the literature. 

The prior for   is assumed to have a positive impact on the efficiency and is defined as an indicator 

function  ( )    if   [   ], or otherwise  ( )   . 

The following conditional posteriors are obtained from the joint posterior 

distribution  (        
      ): the conditional posterior for   and   are a Normal distribution and 

Gamma distribution as in Koop (2003). The conditional posterior distribution for   
   is 

 (  
          ̃  )  (   ) where   

   

∑  ̃     (  ) 
   

 and       . Furthermore, the 

conditional posterior distribution for  ̃  is 

 ( ̃          
    )     [ 

  

 
*   ( ̅      

  
  

  
)  ( ̃    )  

  +]     (9) 
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where    ∑
   

 
 
    and    ∑

   

 
 
    and the conditional posterior for the spatial dependence 

parameter   is  (        
    ̃  )      (  

   

 
)   (  (   )). Finally, the conditional posterior 

distributions for  ̃  and   each requires a posterior Metropolis-Hastings algorithm step (Metropolis 

et al. 1953; Hastings 1970)6.  

 

3. Data 

The data for this study was collected by the International Rice Research Institute (IRRI) from 

2009 to 2011 to conduct an impact assessment of the Bohol Irrigation Development Project in the 

Philippines. There were 496 observations per season from two different ecosystems; 205 and 291 

observations from rainfed and irrigated ecosystems, respectively. Therefore, the panel used for the 

stochastic frontier analysis has a size of 820 and 1,164 for rainfed and irrigated, respectively. Data on 

household characteristics, inputs, and output for rice farming were collected with a structured 

questionnaire. Additionally, the data set also contains geographical coordinates at both the farm 

plot and farmer residences.  

Descriptive statistics for the variables used in the efficiency analysis are available in Table 1. 

Capital is defined as the sum of the current values of agricultural machineries such as tractors, 

sprayers, and other farming devices. Since the level of mechanization in the area is low, the capital 

value is not very large in either area. Notably, it is apparent from Table 1 that farmers in the irrigated 

                                                           
6
 We use a random walk chain Metropolis-Hastings algorithm, which takes draws proportionately in different 

regions of the posterior making sure that the chain moves in the appropriate direction (Koop 2003), where a 

new set of  ̃  is proposed using a Metropolis based on ( ̃          
    )     [ 

  

 
*   ( ̅    

 
 

  
  

  
)  ( ̃    )  

  +]. On the other hand, to draw   the Metropolis is based on  (        
    ̃  )  

    (  
   

 
)   (  (   )). 
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areas perform more intensified rice farming (high inputs and high output), particularly with regard to 

the level of fertilizer and labor. For comparison’s sake, we report the yield at the bottom of Table 1, 

which supports the notion of higher productivity in the irrigated areas. Additionally, education 

attainment is nearly the same for farmers from the two ecosystems. Moreover, socio-economic 

characteristics such as household size, female-led households, and remittances as a percent of total 

income were not found to be significantly different between rainfed and irrigated systems.  

 

 

Table 1:  Summary statistics of production inputs and socio-economic characteristics by 

ecosystems. 

 

Rainfed Irrigated Difference 

 

(n=820) (n=1164) 

 Output (kg) 724.430 1364.897 640.467
***

 

 (636.956) (1107.032)  

Seed (kg) 30.996 37.773 6.777
***

 

 (23.123) (26.179)  

Fertilizer (kg) 27.674 43.023 15.349
***

 

 (35.886) (34.791)  

Labor (Mandays) 32.868 43.685 10.817
***

 

 (18.363) (25.570)  

Plot Size (Ha) 0.573 0.619 0.045
***

 

 (0.409) (0.412)  

Capital (PHP) 1028.623 1151.318 122.695
***

 

 (860.518) (923.425)  

Education (Yrs.) 6.080 5.728 0.352 
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 (3.468) (3.011)  

Household size 5.606 5.601 0.005 

 

(2.322) (2.582) 

 Female Household Head (%) 7.44% 4.90% 2.54% 

Remittance
†
(%) 7.35% 4.69% 2.66% 

Yield (Ton/ha) 1.436 2.352 0.916
***

 

 (0.949) (1.172)  

Note: ‘***’, ‘**’, and ‘*’ mean the difference is statistically significant at the 1, 5, and 10 percent levels, respectively
  

†
: Calculated as remittance as a portion of total income 

 

4. Results 

We estimated both spatial and non-spatial models for each ecosystem (rainfed and irrigated) by 

considering residential and plot neighborhood structures. We also estimated the spatial models by 

considering various definitions of the weight matrix based on 10 cut-off distances from 100m to 

1,000m by 100m.7. We found no significant differences in the estimated coefficients of the non-

spatial models in comparison to the spatial counterparts. Coefficient estimates associated with 

production inputs were consistent with what we would expect, which was that inputs have a 

positive relationship with outputs. 

Table 2 shows the summary results obtained for the spatial dependence parameter rho ( ) with cut-

off distance (100m to 1,000m). The spatial dependence parameter rapidly decreases as the cut-off 

distance increases, reaching its highest average value at a 100m cut-off distance. This is an expected 

finding that means non-observables explain efficiency at distances equal or below 100m. Moreover, 

                                                           
7
 We find no significant differences among 10 different cut-off distance models in the coefficients associated to 

the production inputs and the environmental factors. Estimated parameters for spatial (all distance cut-off) 

and non-spatial models are available upon request from the authors. 
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this finding is also in accordance with Tobler's First Law of Geography which says that near things 

tend to be more related than distant things. Another interesting result is that spatial dependence 

was stronger for irrigated farms than for rainfed farms (Table 2). Thus, for the 100m model, the 

probability that the spatial dependence parameter is greater in irrigated farms than rainfed farms is 

63% and 78%, respectively, for the plot and residence neighborhoods8. For irrigated farms, the 

probability that the spatial effect is greater under the plot neighborhood structure than under the 

residential neighborhood structure is 54%, whereas for the rainfed farms this probability is 71%. 

 

 

Table 2: Spatial dependence at different cut-off distances. 

Distance 

(metres) 

Spatial parameter rho 

Plot Residence 

Irrigated Rainfed Irrigated  Rainfed 

100 

0.21

8 

(0.014,0.565

) 

0.15

3 

(0.010,0.375

) 

0.19

5 

(0.015,0.478

) 

0.08

6 

(0.006,0.209

) 

200 

0.09

5 

(0.006,0.237

) 

0.06

7 

(0.004,0.160

) 

0.07

6 

(0.004,0.185

) 

0.05

5 

(0.003,0.130

) 

300 

0.05

7 

(0.003,0.134

) 

0.04

1 

(0.002,0.099

) 

0.04

5 

(0.002,0.107

) 

0.04

1 

(0.002,0.097

) 

400 

0.04

2 

(0.003,0.096

) 

0.02

6 

(0.001,0.065

) 

0.03

2 

(0.001,0.076

) 

0.02

9 

(0.006,0.209

) 

                                                           
8
 These were obtained comparing the conditional posterior distributions obtained for   for rainfed farms for 

residence and plot neighborhoods after 25,000 draws from the conditional distributions with 5,000 draws 

discarded and 20,000 retained. The comparison was done between each of the 20,000 values of the 

conditional posterior distributions for  . When the spatial dependence of on type of farm (1) is greater than 

another (2) a value of 1 is given, and 0 otherwise.  
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500 

0.03

3 

(0.002,0.071

) 

0.01

9 

(0.009,0.381

) 

0.02

6 

(0.001,0.060

) 

0.02

3 

(0.001,0.057

) 

600 

0.02

8 

(0.002,0.058

) 

0.01

4 

(0.001,0.036

) 

0.02

2 

(0.015,0.048

) 

0.01

8 

(0.001,0.045

) 

700 

0.02

2 

(0.002,0.047

) 

0.01

2 

(0.001,0.032

) 

0.01

8 

(0.001,0.040

) 

0.01

5 

(0.001,0.037

) 

800 

0.02

0 

(0.002,0.039

) 

0.01

0 

(0.001,0.027

) 

0.01

6 

(0.001,0.035

) 

0.01

2 

(0.001,0.031

) 

900 

0.01

6 

(0.001,0.033

) 

0.00

9 

(0.001,0.022

) 

0.01

4 

(0.001,0.030

) 

0.01

1 (4E-4,0.027) 

1,000 

0.01

5 

(0.002,0.028

) 

0.00

8 (5E-4,0.019) 

0.01

2 

(0.001,0.026

) 

0.00

9 (4E-4,0.022) 

Note: The interpretation of the Bayesian 95% coverage posterior (a,b) is that according to our data and model the 

parameter is between a and b with a 0.95 probability 

 

Lastly, as the spatial dependence increases with shorter distances, the mean efficiency also 

increases, suggesting that the more unobservable aspects (e.g. cooperation, information sharing) are 

explained with the spatial models the more “inefficiency” from the non-spatial models is controlled 

for. Thus, the estimated mean efficiency for the irrigated farms models with plot spatial dependence 

at 100m, 400m, 700m, and 1,000m are 0.91, 0.90, 0.88, and 0.87, respectively. Additionally, the 

estimated mean efficiency for the rainfed farms models with plot spatial dependence at 100m, 

400m, 700m, and 1,000m are 0.88, 0.87, are 0.86, and 0.86, respectively. As for the residence spatial 

dependence, the results are consistent with what we found in the plot spatial models. The estimated 

mean efficiency for the irrigated farms models with residence spatial dependence at 100m, 400m, 

700m, and 1,000m are 0.91, 0.90, 0.89, and 0.88, respectively. The estimated mean efficiency for the 

rainfed farms models with plot spatial dependence at 100m, 400m, 700m, and 1,000m are 0.88, 
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0.87, 0.86, 0.86, respectively. However, although spatial dependency increases with shorter 

distances, this does not mean that spatial models always explain efficiency better than a non-spatial 

model. The use of non-spatial models may be able to explain efficiency as well as or even better than 

spatial models when cut-off distances are relatively large. Notably, the average efficiency levels of 

non-spatial models for irrigated and rainfed farms is 0.89 and 0.85 respectively for both plot and 

residence coordinates models, which suggests that for irrigated farms, only spatial models with cut-

off distances at 100m and 400m explain efficiency better than the non-spatial model. For the case of 

rainfed farms all spatial models outperform the non-spatial model. This result suggests that spatial 

effects at relatively small distances (< 400 m) (e.g. sharing information, use of common resources) 

are important determinants for irrigated rice production. For datasets that cover relatively large 

areas, accounting for spatial dependency in this way helps control for some of the unobserved 

heterogeneity in the sample, e.g., climatic and topographical conditions. However, the source and 

processes behind the spatial dependence cannot be explained due to the variety of heterogeneous 

possible reasons. In this study, the fact that the sample is relatively homogeneous works as an 

advantage in explaining such spatial dependence. Since the observed spatial dependence exists at 

such small cut-off distances (100m), it cannot be a result of any climatic condition.  

Figures 2a shows the distribution of efficiency for irrigated and rainfed farms using non-spatial 

model and spatial models (at 100m, 400m, 700m and 1,000m) in the case of plot neighborhood. 

Interestingly, in all four scenarios, the distribution is skewed towards the right and has a relatively 

long left tale. Very few farmers have efficiency levels less than 0.5. The distribution of efficiency 

varies not only by ecosystem, but also by type of neighborhood. In every case, the distribution of the 

non-spatial model is very distinct from the spatial models. This finding exposes the biases in 

efficiency levels that arise when spatial considerations are ignored, i.e., cases where the efficiency 

distribution from spatial models is located to the right of the non-spatial efficiency distribution. 

More specifically, for the case using plot neighborhood, models for irrigated farms where spatial 
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effects were found to be relatively high (100m and 400m) have a narrow distribution to the right of 

the non-spatial efficiency distribution. This suggests that part of the farm inefficiency not captured 

under the non-spatial model can be explained by these spatial models. Also, the fact that the 

distribution shape is narrower indicates that differences between farm efficiency levels have been 

reduced once spatial effects have been taken into account.  

Hence, although we find that the shorter the distance, the greater the spatial dependence in 

both cases of irrigated and rainfed, we can see in Figure 2a (bottom) that for rainfed farms the effect 

of such increase in spatial dependence with distance is relatively small in explaining efficiency 

(efficiency distributions are closer to each other than for Figure 2a (top)). Additionally, considering 

the non-spatial efficiency distribution as a reference, we found that the efficiency distribution using 

the spatial model (100m, 400m) for irrigated farms is situated to the right of the non-spatial case 

(Figure 2a). This means that for irrigated farms, spatial dependence may help explaining inefficiency, 

i.e., irrigated farmers working more closely, but for rainfed farms, which work more independently, 

spatial dependence does not contribute as much in explaining efficiency as the case for irrigated 

farms.  

This information is not surprising since spatial effects related to rainfed farmer’s plot should 

be relatively less important in explaining efficiency, as compared to irrigated farms. For instance, for 

irrigated farms, information sharing about technology among plot neighbors may determine 

production levels. This may not be the case for rainfed farms whose practices may be determined 

more independently, and the level of production may be more dependent on the plot’s location, i.e., 

specific agronomic conditions rather than sharing knowledge. The same argument can be used when 

comparing spatial models that use large neighborhood areas and their contributions to explaining 

inefficiency, e.g., comparing efficiency distributions using the spatial dependence model (cut-off 

distance 1,000m) vs. non-spatial dependence model (cut-off distance 100m) for irrigated farms. We 

found small spatial dependence in our longer distance spatial model.  
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Figure 2a: Distribution of efficiency in irrigated farms (top) and rainfed farms (bottom) using plot 

coordinates. 

 

Figures 2b shows the distribution of efficiency for irrigated (top) and rainfed (bottom) farms, 

using a non-spatial model and spatial models (at 100m, 400m, 700m and 1,000m) in the case of 

residential neighborhood structure. For the models on irrigated farms, the same findings were 

produced as in the case of plot neighborhood, suggesting that both natural conditions of the spatial 

area and communication between farmers with neighbor residence plays a role in explaining part of 

the inefficiency detected by the non-spatial models. As in the plot coordinates case, the efficiency 

distribution for rainfed farms when spatial effects are taken into account are different from the 

efficiency distribution obtained by the non-spatial model.  
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This aforementioned finding suggests that natural conditions are likely playing a role in 

explaining the estimated inefficiency levels gathered by the non-spatial model.  

 

 

 

 

Figure 2b: Distribution of efficiency in irrigated farms (top) and rainfed farms (bottom) using 

residence coordinates. 

 

Spatial dependence can explain why the level of connectedness, i.e., working together and 

sharing information, is important in explaining efficiency levels. We found that different 

neighborhood (residential and plot) explain similar spatial processes, and there are two types of 

processes that are captured by residential neighborhood and plot neighborhood. Both social and 
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environmental conditions are captured for farmers’ residence and plot location. Using plot 

neighborhood, Figure 3a shows the map of percentage change in farm efficiency levels for both 

irrigated and rainfed farms in this study area. Rainfed farms tend to have greater increases in 

efficiency levels once the spatial dependency is incorporated into the analysis. Irrigated farms have 

relatively less increase in efficiency levels once spatial dependency is incorporated.  

The finding above needs some clarification because we found stronger spatial dependency in 

irrigated area. Irrigated farms being more spatially dependent means that the efficiency levels of 

neighboring irrigated farms are more similar between them than the efficiency levels of neighboring 

rainfed farms. This is possibly due to conditions and practices under irrigation being more similar 

between neighboring irrigated farms than the conditions and practices under rainfed between 

neighboring rainfed farms. The fact that we can capture this with the spatial models helps us identify 

better farm efficiency levels (i.e. avoiding attributing unobservable environmental conditions to 

inefficiency). The nature of the spatial dependency is what determines its effect of spatial 

dependency on the farm efficiency estimation. Thus, for irrigated farms the nature of spatial 

dependency may come from similar environmental conditions and practices (e.g. through sharing 

information) whereas for rainfed farms it may come from more variable conditions (e.g. climatic and 

topographical   conditions)”. Being able to capture unobservable variable conditions was found to be 

relatively more important in explaining efficiency levels for rainfed farms than capturing 

unobservable environmental conditions and practices for explaining farm efficiency levels for 

irrigated farms (i.e. accounting for more variable conditions such as weather conditions are more 

determinant than more “controlled” conditions in explaining efficiency levels).  

Figure 3b shows the map of percentage change in farm efficiency levels for both irrigated and 

rainfed farms in the study area using residence neighborhood. In this case, we found similar results 

as in the plot neighborhood. We found a higher efficiency increase on the rainfed area than on the 

irrigated area. Again, we expected this result since natural conditions are expected to be more 
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important in explaining efficiency for rainfed farms than for irrigated farms. Still, we find increase in 

efficiency levels for irrigated farms. This finding may be a result of the residence neighborhood, or it 

may be a result of partially capturing the social aspect.  

The percentage average increase in efficiency is, on average, higher for rainfed farms (3.4% 

and 3.3% for plot and residential neighborhood) than for irrigated farms (2.9% and 2.6% for plot and 

residential neighborhood), in light of the average efficiency levels mentioned above for the spatial 

model using the 100m cut-off distance for irrigated and rainfed farm (0.91 and 0.88), and the 

efficiency levels obtained from the equivalent non-spatial models (0.89 and 0.85). Hence, we found 

that although the spatial dependence parameter ( ) tells us the strength of the spatial dependence, 

which is generally greater for irrigated than for rainfed farms, such strength, i.e., incorporating 

spatial dependency into the analysis, follows a non-linear relationship with how well the spatial 

model performs compared with the non-spatial model in terms of percentage change in efficiency 

between spatial and non-spatial models. To explain, using the plot neighborhood structure, the 

spatial dependence parameter at 100m for irrigated and rainfed farms is 0.195 and 0.086, 

respectively, and the percent efficiency increase is 2.6% and 3.3% for irrigated and rainfed farms, 

respectively.  

  

Figure 3a: Percentage change in efficiency score between spatial model (100m) and non spatial (plot 

coordinates). 
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Figure 3b: Percentage change in efficiency score between spatial model (100m) and non spatial 

(residence coordinates). 

 

The estimated models also show noteworthy results. Education has a positive and significant 

effect in irrigated as well as rainfed environments. Even though the rainfed farmers are more 

educated by about 0.4 years than irrigated farmers, there was no significant difference in 

means between the two ecosystems (see Table 1). In the irrigated area, the rice farming is 

more modernized in the sense that farmers use new and improved varieties and chemical 

inputs, as well as following standardized agronomic practices under controlled irrigation. 

Formal education for literacy as well as basic scientific knowledge is important to understand 

these types of practices. The fact that education significantly contributed to improve output in 

the rainfed environment also makes sense because even though farming is less intensified in 

the rainfed environment; formal education is still useful to the rainfed farmers. In fact, the 

results in Table 2 show the largest educational impact in the rainfed farmers’ plot neighbor 

model (0.013). Additionally, Household size was found to be insignificant in all estimated 

models. This finding was expected because more farmers reach out to hired labor for farm 

operations. Finally, regarding the dummy variables for the studied periods we found that 

results corroborate the expected effects where rice production in periods 2 and 4 levels was 
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lower than the first period (i.e. the benchmark period) due to the severe drought in the second 

season and flood in the fourth season mentioned above.  

5. Conclusions and Policy Implications  

This paper investigates the role of spatial dependency in technical efficiency for different ecosystems 

and neighborhood structures focusing on rice farmers in Bohol, Philippines. A spatial econometrics 

Bayesian approach was used to estimate the stochastic production parameters, as well as the spatial 

dependency parameters. The results were compared with non-spatial Bayesian stochastic frontier 

approach. We found that spatial dependency exists at the residential and plot levels, maintaining 

more strength for irrigated than rainfed farms. We also found that technical inefficiency levels 

decrease as spatial effects are more taken into account. Since the spatial effects increases with a 

shorter network distance, the decreasing technical inefficiency means that the unobserved 

inefficiencies can be explained better by considering small networks of relatively close farmers over 

large networks of distant farmers, reflecting the location-specific nature of farming.  

Two policy implications can be drawn from this study. First, a stronger spatial dependency in 

the irrigated area indicates the existence of stronger externalities; a positive shock on one farmer’s 

TE improves the TE of the nearby farmers. The existence of externalities may justify public 

interventions. However, it is important to note that we also found that the size of the spatially 

dependent network is small. Hence, such an externality may be easily internalized through collective 

actions within the small group. In irrigated area, the water users group may serve as an appropriate 

unit for this purpose. Although this is an important practical issue, it is beyond the scope of this 

paper and requires future study. Additionally, since the rainfed farming is more individualistic, 

policies which are targeted to individual farmers are relatively more important, in comparison to the 

case of irrigated area. Having observed a strong impact of schooling years, educational support or 

extension may work effectively in improving rainfed farmers’ technical efficiency, which is currently 

lower than the irrigated farmers. 
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Although our analysis focuses on technical efficiency for rice production technology change 

and scale effect are also relevant aspects to be considered in long-term studies. Our data covers only 

two years which did not allow for TFP growth and technological progress estimation as done in 

studies like Singbo and Larue (2016), Umetsu et al. (2003), Nin et al. (2003) and Coelli and Rao (2005). 

In addition, evidence of spatial dependency in technological progress has been largely demonstrated 

in the economic literature. The role of spatial dependence in technological progress has mainly been 

stressed in the context of regional productivity (see Griffith et al., 2004; Nelson and Phelps, 1966; 

Benhabib and Spiegel, 1994). Similar to the endogenous growth theory in economic literature, 

technological progress varies across farmers and it depends on farmers’ ability to innovate or use 

the improved technologies. As we highlighted above, farmers use the technology differently with 

human capital or the level of education being commonly cited as drivers of technological progress. In 

addition, farmers located below the frontier require sufficient social capabilities to allow them to 

successfully exploiting the technologies employed by the most efficient farmers.   

 

Acknowledgment: We would like to thank the Japan International Cooperation Agency and Japan 

International Research Center for Agricultural Science for their financial support of the survey data 

collection; Shigeki Yokoyama for co-managing the project; Takuji W. Tsusaka for data 

analysis; Modesto Membreve, Franklyn Fusingan, Cesar Niluag, Baby Descallar and Felipa Danoso of 

the National Irrigation Administration for arranging the interviews with farmers; and Pie Moya, Lolit 

Garcia, Shiela Valencia, Elmer Suñaz, Edmund Mendez, Evangeline Austria, Ma. Indira Jose, Neale 

Paguirigan, Arnel Rala and Cornelia Garcia for data collection. Authors would like to thank the editor- 

in-charge and two anonymous reviewers for their helpful comments. Pede’s time on this research 

was supported by the RICE CGIAR Research Program. 

 

 



 

 

 
This article is protected by copyright. All rights reserved. 

 
 

References 
Aigner, D., Lovell, C.A.K., and Schmidt. P., 1977. Formulation and Estimations of Stochastic Frontier 
Production Function Models. J. Econometrics 6(1). 21–37. 
Alvarez, A., 2004. Technical efficiency and farm size: a conditional analysis. Agric. Econ. 30(3). 241–
250. 
Anselin, L., 1988. Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, 
Dordrecht, Netherlands. 
Areal, F.J., Balcombe, K., and Tiffin. R., 2012. Integrating spatial dependence into Stochastic Frontier 
Analysis. Australian. J. Agr. Resource Econ. 56(4). 21–541.  
Areal, F.J., and Riesgo, L., 2014. Farmers’ views on the future of olive farming in Andalusia, Spain. 
Land Use Policy 36, 543–553. 
Balde, B.S., Kobayashi, H., Nohmi, M., Ishida, A., Esham, M., and Tolno, E., 2014. An analysis of 
technical efficiency of mangrove rice production in the Guinean Coastal Area. J. Agr. Sci. 6(8).179–
196. 
Battese, G.E., 1997. A note on the estimation of Cobb-Douglas production functions when some 
explanatory variables have zero values. J. Agr. Econ. 48(1-3), 250–252. 
Battese, G.E., and Coelli. T.J., 1995. A model for technical inefficiency effects in a Stochastic frontier 
production function for panel data. Empir. Econ. 20(2), 325–332. 
Battese, G.E., and Coelli. T.J., 1992. Frontier production functions, technical efficiency and panel 
data : with application to paddy farmers in India. J. Productiv. Anal. 3, 153–169. 
Battese, G.E., and Rao, D.S.P., 2002. Technology gap, efficiency, and a stochastic metafrontier 
function. Int. J. of Bus. Econ. 1(2), 87–93. 
Bell, K.P., and Bocksteal, N.E., 2000. Applying the generalized-moments estimation approach to 
spatial problems involving microlevels data. Rev. Econ. Stat. 82(1), 72–82. 
Benhabib, J. and Spiegel, M. (1994). “The Role of Human Capital in Economic Development: Evidence 
from Aggregate Cross-Country Data” Journal of Monetary Economics 34:143–173. 
Bockstael, N.E., 1996. Modeling economics and ecology: the importance of a spatial perspective. 
Amer.J. Agr. Econ. 78(5),1168–1180.  
Bravo-Ureta, B.E., Greene, W., and Solís, D., 2011. Technical efficiency analysis correcting for biases 
from observed and unobserved variables: an application to a natural resource management project.” 
Empir. Econ. 43(1), 55–72. 
Case, A., 1992. Neighborhood influence and technological change. Reg. Sci. Urban Econ. 22(3), 491–
508. 
Coelli, T.J., and Battese, G.E., 1996. Identification of factors which influence the tenchnical 
inefficiency of Indian farmers. Australian. J. Agr. Econ. 40(2), 103–128.  
Coelli, T.J., Rao, D.S.P., O’Donnell, C.J. and Battese, G.E. 2005. An introduction to efficiency and 
productivity analysis. 2nd ed. Springer, New York. 
Druska, V., and Horrace, W.C., 2004. Generalized moments estimation for spatial panel data: 
Indonesian rice farming. Amer. J. Agr. Econ. 86(1), 185–198. 
Farrell, M.J., 1957. The measurement of productive efficiency. J. Roy. Statistical Society 120(3), 253–
290. 
Glass, A.J., Kenjegalieva, K. and Paez-Farrell, J. 2013. Productivity growth decomposition using a 
spatial autoregressive frontier model. Economics Letters 119, 291–295. 
Glass, A.J., Kenjegalieva, K. and Sickles, R.C. 2014. Estimating efficiency spillovers with state level 
evidence for manufacturing in the US. Economics Letters 123, 154–159. 
 Glass, A., Kenjegalieva, K. and Sickles, R.C. 2015, A Spatial autoregressive stochastic frontier model 
for panel data with asymmetric efficiency spillovers. RISE working paper. 
Griffith, R. S., Redding, J. and Van, R. 2004. “Mapping the Two Faces of R&D: Productivity Growth in 
a Panel of OECD Industries” Review of Economics and Statistics 86:883–895. 



 

 

 
This article is protected by copyright. All rights reserved. 

 
 

Hossain, E., and Rahman, Z., 2012. Technical efficiency analysis of rice farmers in Naogaon district: 
an application of the stochastic frontier approach. J. Econ. Devel. Studies 1(1), 2–22. 
Idiong, I.C., 2007. Estimation of farm level technical efficiency in smallscale swamp rice production in 
Cross River State of Nigeria: a stochastic frontier approach. World J. Agr. Sci. 3(5), 653–658. 
JICA., 2012. Impact evaluation of Bohol irrigation project (Phase2 ) in the Republic of the Philippines. 
JICA, Tokyo. 
Kalirajan, K.P., 1990. On measuring economic efficiency. J. Appl. Econometrics 5, 75–85. 
Karagiannis, G., and Tzouvelekas, V., 2009. Measuring technical efficiency in the stochastic varying 
coefficient frontier model. Agric. Econ. 40(4), 389–396. 
Kelejian, H.H., and Prucha, I.R., 1999. A generalized moments estimator for the autoregressive 
parameter in a spatial model. Int. Econ. Rev. 40(2), 509–533.  
Kim, C.W., Phippa, T.T., and Anselin, L., 2003. Measuring the benefits of air quality improvement: a 
spatial hedonic approach. J. Environ. Econ. Manage. 45(1), 24–39. 
Koop, G., and Steel, M.F.J., 2001. Bayesian analysis of stochastic frontier models, in B. H. Baltagi, ed., 
A companion to theoretical econometrics, Blackwell, Malden, MA , USA.  
Koop, G., 2003. Bayesian econometrics. John Wiley & Sons Inc., Chicester, West Sussex, UK. 
Kumbhakar, S.C., and Tsionas, E.G., 2005. Measuring technical and allocative inefficiency in the 
translog cost system: a Bayesian approach. J. Econometrics 126(2), 355–384.  
Kumbhakar, Gish and McGukin 1991. A generalized production frontier approach for estimating 
determinants of inefficiency in U.S. dairy farms. J. Bus. Econ. Statist. 9(3), 279-286. 
Meeusen, W., and Van Den Broeck, J., 1977. Efficiency estimation from Cobb-Douglas production 
functions with composed error. Int. Econ. Rev. 18(2), 435-444. 
Michler, J.D., and Shively, G.E., 2014. Land tenure, tenure security and farm efficiency: panel 
evidence from the Philippines. J. Agr. Econ. 66(1), 155-169. 
Nelson, R. and Phelps, E. 1966. “Investment in Human, Technological Diffusion, and Economic 
Growth” American Economic Review 56:65–75. 
Nin, A., C. Arndt and Preckel, P. 2003. Is agricultural productivity in developing countries really 
shrinking? New evidence using a modified nonparametric approach. Journal of Development 
Economics, 71, 395–415.  
Ostrom, E., 2000. Collective action and the evolution of social norms. J. Econ. Perspect. 14(3), 137–
158. 
Oyekale, A.S., 2012. Impact of climate change on cocoa agriculture and technical efficiency of cocoa 
farmers in South-West Nigeria. J. Human Ecol. 40(2), 143–148. 
Quilty, J.R., McKinley, J., Pede, V.O. , Buresh, R.J., Correa Jr., T.Q., and Sandro, J.M. 2014. Energy 
efficiency of rice production in farmers’ fields and intensively cropped research fields in the 
Philippines. Field Crop Res. 168, 8–18. 
Roe, B., Irwin, E.G., and Sharp, J.S., 2002. Pigs in space: modeling the spatial structure of hog 
production in traditional and nontraditional production regions. Amer. J. Agr. Econ. 84(2), 259–278. 
Sauer, J., and Latacz-Lohmann, U., 2015. Investment, technical change and efficiency: empirical 
evidence from German dairy production. Europ. Rev. Agr. Econ. 42(1), 151-175. 
Schmidt, A.M., Moreira, A.R.B., Helfand, S.M., and Fonseca, T.C.O., 2008. Spatial stochastic frontier 
models: accounting for unobserved local determinants of inefficiency. J. Productiv. Anal. 31(2), 101–
112. 
Singbo, A. and Larue, B. 2016. Scale economies and the sources of TFP growth of Quebec Dairy 
farms. Canadian Journal of Agricultural Economics 64(2), 339-363. 
Tsionas, E.G. and Michaelides, P.G. 2015, ‘A spatial stochastic frontier model with spillovers: 
Evidence for Italian regions’, Scottish J. Pol. Econ. (in press), 1–14, doi: 10.1111/sjpe.12081. 
Umetsu, C., Lekprichakul, T. and Charavorty, U. 2003: Efficiency and Technical Change in the 
Philippine Rice Sector: A Malmquist Total Factor Productivity Analysis. American Journal of 
Agricultural Economics 85(4), 943-963. 


