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Abstract

Urban gardens are an integral part of urban agricultural systems, contributing to ecosystem services, biodiversity and hu-
man wellbeing. These systems occur at fine scales, can be highly complex and therefore offer the opportunity to test mecha-
nisms of ecological patterns and processes. The capacity to confidently characterize urban gardens and their land uses is
still lacking, while it could provide the basis for assessing ecosystem service provision. Land classifications from remote
sensing platforms are common at the landscape scale, but imagery often lacks the resolution required to map differences in
land use of fine-scale systems such as urban gardens. Here, we present a workflow to model and map land use in urban gar-
dens using imagery from an unoccupied aerial vehicle (UAV) and machine learning. Due to high resolutions (<5 cm) from
image acquisition at low altitudes, UAV remote sensing is better suited to characterize urban land use. We mapped six com-
mon land uses in 10 urban community gardens, exhibiting distinct spatial arrangements. Our models had good predictive
performance, reaching 80% overall prediction accuracy in independent validation and up to 95% when assessing model per-
formance per cover class. Extracting spatial metrics from these land use classifications, we found that at the garden and
plot scale, plant species richness can be estimated by the total area and patchiness of crops. Land use classifications like
these can offer an accessible tool to assess complex urban habitats and justify the importance of urban agriculture as a
service-providing system, contributing to the sustainability and livability of cities.
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Introduction

Up to 11% of the world’s urban surface could be used for urban
agriculture (UA), with the potential to produce 5% of food crops
globally (Clinton et al. 2018). These modeled approaches suggest
that existing vegetation in urban agricultural systems provides
�$33 billion in ecosystem services, the largest proportion of
which is food (Clinton et al. 2018). Although global estimates il-
luminate the potential of UA, we still lack research that har-
nesses new tools and methods to comprehensively characterize
land uses within urban agricultural systems at finer spatial
scales to provide more accurate assessments of both potential

and realized ecosystem service provision. Some work estimates
that in some cities (e.g. in the UK), 18–27% of urban areas com-
prise urban gardens (Loram et al. 2008), and there is large poten-
tial to revitalize urban lands for horticultural production to
boost urban food security (Edmondson et al. 2020). The popular-
ity of urban gardening as a form of multifunctional green space
for biodiversity conservation, ecosystem service provision and
human wellbeing means that it is imperative that we under-
stand and are able to quantify urban agricultural land use at
fine spatial scales (Lovell 2010; Lin, Philpott, and Jha 2015). This
is important from an urban conservation and planning

VC The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

1

Journal of Urban Ecology, 2022, 1–12

https://doi.org/10.1093/jue/juac008
Research Article

D
ow

nloaded from
 https://academ

ic.oup.com
/jue/article/8/1/juac008/6584484 by U

niversity of M
elbourne Library user on 03 June 2022

https://orcid.org/0000-0002-6955-9203
https://orcid.org/0000-0002-3304-0725
https://academic.oup.com/


perspective to justify the significance of these systems for the
environment and society and to protect and maintain these sys-
tems under urban densification in many parts of the world.

From an ecological perspective, urban agricultural systems
can be highly complex and offer a system to test mechanisms
driving ecological patterns and processes (Philpott and Bichier
2017). Here, researchers are often interested in testing ecological
theories around ecosystem functioning and service provision in
relation to land use types and composition such as crops, trees
and bares soil. UA systems can be heterogeneous in vegetation
and ground cover, consisting of a wide array of annual and pe-
rennial vegetation (Loram et al. 2008; Taylor and Lovell 2015)
that are patchily distributed throughout the habitat (Plascencia
and Philpott 2017). Garden vegetation can indicate vegetation-
related ecosystem function and structure (Hooper and Vitousek
1997; Hooper et al. 2005) with implications for ecosystem service
provisioning from gardens (Lin, Philpott, and Jha 2015). Because
these systems are human designed, social filters such as socio-
cultural characteristics can create variation in plant communi-
ties between individual garden plots (Philpott et al. 2020). In ad-
dition, spatial contagion or aggregation in vegetation patterns
may drive neighborhood- to landscape-scale vegetation man-
agement, with potential impact on ecological outcomes in ur-
ban areas. For example, spatially closer front-yard urban
gardens share similar aesthetic and plant composition, indicat-
ing a spatial component to fine-scale vegetation land use in city
neighborhoods (Hunter and Brown 2012; Marshall, Grose, and
Williams 2019).

The characterization of fine-scale vegetation heterogeneity
and spatial aggregation within urban environments can chal-
lenge urban ecologists if such patterns are hard to accurately
and systematically document and link to functional out-
comes—at either the urban habitat or the urban landscape
scale. Recent technologies are recommended to support effi-
cient land use classification across heterogeneous urban habi-
tats (Dennis et al. 2018; Creutzig et al. 2019). For example,
different canopy elements such as patches and connectivity can
be analyzed using remote sensing technology that assesses fine
scale (1.5 m) spectral and structural imagery to describe the can-
opy network of cities (Ossola et al. 2019a). At the wildland–ur-
ban interface, object-based classifications using high-resolution
aerial photography can classify land use patterns (Cleve et al.
2008). UAV technologies are also recently employed in urban
ecosystems to classify urban vegetation composition (Feng, Liu,
and Gong 2015) or urban forest health (Näsi et al. 2018). These
works have demonstrated the high performance of hybrid
methods using random forest classifiers consisting of decision
trees combined with a texture analysis to accurately differenti-
ate land uses within urban-vegetated areas (Feng, Liu, and Gong
2015). Yet, while UAV can provide an efficient approach to map
and characterize urban vegetation, these methods and tools
have not been utilized in a small-scale urban garden context.

In this study, our goal is to combine swift and affordable
approaches and technologies in land cover mapping to rapidly
classify and characterize different land uses and their spatial
aggregation within urban agricultural systems (community gar-
dens) at the very high (<5 cm) resolution and therefore fine spa-
tial scale. We aim to first use unoccupied aerial vehicles (UAVs)
to image vegetatively diverse community gardens and explore
how fine-scale remote sensing technologies combined with
established machine learning modeling can assist with the clas-
sification and characterization of urban garden land use, vege-
tation composition and vegetation spatial aggregation within a
specific habitat type common in cities. Second, we aim to

support UAV data with field observations and relate collected
imagery to observed land use to train a machine learning algo-
rithm in a supervised classification approach, to then predict
and characterize land use and vegetation composition across
gardens and garden beds. Here, we consider garden ‘land use’ to
be the different spatially explicit vegetation arrangements,
activities and inputs that take place within a garden habitat
(e.g. crop production, recreation, shading), while supervised
land use classification provides information on whether a
garden plot is designated to food crops, trees or currently not
vegetated and only covered in topsoil or mulch. Thus, while
land use is often characterized and predicted at the landscape
scale (e.g. a city), we propose community gardens as a model
habitat to test methods of land use classification at fine scales
because of high intra-system heterogeneity. We ask, (i) can
we use machine learning to confidently predict land use and
spatial arrangement in small-scale urban gardens from UAV
imagery? (ii) Do predicted land use and vegetation spatial
arrangement correlate with field observations? And (iii) can we
predict indicators of species richness (i.e. number of plant
species) from high-resolution remote sensing data?

Methods

We used field observations of urban community gardens to as-
sess the vegetation management characteristics of perennial
and annual vegetation and used an UAV to capture imagery of
urban community gardens. We studied 10 community (allot-
ment) gardens in the Greater Metropolitan Area of Melbourne,
Victoria, Australia (population 4.7 million, study area center
point: 37� 500 8.6000 S 145� 20 15.3100 E; Supplementary Fig. S1).
The gardens were established between 6 to 38 years ago, are be-
tween 584 and 6801 m2 in size, and have between 25 and 124 al-
lotment plots. The gardens are community managed, where
individual gardeners lease single allotment plots to cultivate
plants as they choose, under rules of the garden management.
We considered two relevant spatial scales of the gardens in our
study: (i) the entire garden including all allotment plots and
common areas (henceforth ‘garden scale’), and (ii) the individ-
ual gardener allotment plot (‘plot scale’). We worked with each
of the community garden managers to randomly select four gar-
den plots distributed throughout the garden of gardeners will-
ing to allow us access to their plot to document vegetation
structure and cover (n¼ 36).

Field observation data

We assessed garden vegetation at the garden and plot scale us-
ing empirical field assessments. Specifically, we sampled plant
species diversity and cover, and vegetation versus bare ground
cover composition at the garden and plot scale. Assuming that
all plant species play some functional role in gardens, we
assessed all annual and perennial plant species, both planned
(i.e. vegetable, ornamental plants) and ambient (i.e. ‘weeds’). At
the garden scale, we placed transects every 5 m across the width
of the garden. Along the transects, we randomly placed 1 � 1 m
quadrats within which we recorded the species identity of all
plants present and estimated the percent of herbaceous vegeta-
tion ground cover including crop plants, weed plants and grass
(i.e. versus bare soil, mulch, rock). Because gardens were of dif-
ferent sizes, they had varied numbers of transects and we pro-
portionally increased the number of 1 � 1 m quadrats relative to
garden size. All gardens had a minimum of eight quadrats, and
we added one quadrat for every additional 500 m2 of garden
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area (8–19 quadrats per garden; minimum of 2, up to 5 quadrats
per transect). For each garden, we summed the total number of
all plant species observed and calculated the average percent of
herbaceous vegetation cover for all quadrats along the transects
(i.e. garden scale measurements). At the plot scale, we similarly
sampled the species identity of plants present, and estimated
the percent of herbaceous vegetation cover in the entire plot.
Total number of plant species and average vegetation cover
were calculated for each garden plot (i.e. plot scale measure-
ments). Collectively, these data provided us with observed field
vegetation measurements (e.g. number of plant species, vegeta-
tion cover) commonly collected at the garden and plot scale.

UAV imagery collection

Aerial imagery of each garden was collected using an autono-
mous commercial Mavic Pro multirotor UAV (DJI, Shenzhen,
China) during field surveys (summer 2018). The UAV flight paths
for each garden were planned and executed using Ground
Station Pro (DJI, Shenzhen, China), directed by the authors. The
flight altitude was 70 m above the ground and 30 m away from
any individuals on the ground in accordance with the
Australian Civil Aviation Safety Authority (CASA 2019). All auto-
piloted flights were carried out in overcast weather within 8 h
on the same calendar day to maintain consistent ambient light
conditions and avoid shadows of tall buildings or vegetation on
our target cover classes. Shadows can alter the target classes’
spectral reflectance and lead to misclassifications if a super-
vised classification model is trained on areas that have received
shadows. Flying on overcast days or under diffuse light condi-
tions avoids this problem, ensures similar light conditions for
all images and may enhance spectral features of vegetation
(Arroyo-Mora et al. 2021). The 70 m flight altitude resulted in an
image resolution of �2.5 cm per pixel across all gardens. Further
details regarding flight and imagery collection can be found in
Supplementary Table S1.

Image processing and variable compilation

We processed images using Metashape (Agisoft, St. Petersburg,
Russia), utilizing Structure from Motion to estimate 3D structure
from 2D overlapping image sequences through photogramme-
try (Ullman 1979). The image processing resulted in 3D point
clouds for each garden, which we then used to derive orthomo-
saics of the three available color bands [red, green and blue
(RGB) reflectance; Fig. 1A] and to compute a canopy height
model (CHM) of each garden (Fig. 1B). We processed all UAV
data products using the raster, sf and lidR packages (Hijmans
et al. 2017; Pebesma 2018; Roussel and Auty 2019) in the R statis-
tical environment (R Development Core Team 2019). First, point
clouds were normalized to a 0 m ground elevation. Using the
grid_canopy function from lidR, we calculated a digital terrain
model (DTM) and a digital surface model (DSM) that express
both the ground elevation and point elevation above ground. A
CHM is the difference between DSM and DTM (CHM ¼ DSM—
DTM) and calculated to a 2D raster, expressing each pixel’s
height above ground in meters. Our CHMs had a resolution of
0.5 m and were subsequently smoothed by a sub-circle algo-
rithm adding a 0.5 m disk around each pixel to close empty pix-
els resulting from the respective point density (Khosravipour
et al. 2014).

To test additional independent variables for land use classi-
fication available from the orthomosaic apart from visual light
reflectance, we carried out a texture analysis on the imagery of

each garden, adding common variables from object-based im-
age analysis (OBIA) to our supervised classification model.
Image texture may represent pixel patterns that are generally
not characterized by spectral reflectance and can therefore en-
hance the image classification accuracy in supervised classifica-
tion approaches by Herold, Liu, and Clarke (2003), Thomas,
Hendrix, and Congalton (2003), Cleve et al. (2008), Szantoi et al.
(2013) and Feng, Liu, and Gong (2015). Texture was derived from
grey-level co-occurrence matrices (GLCM) of the green band.
The matrices are indicating the likelihood that values of pixel-
pairs co-occur in a certain direction and lag distance within
each image, termed texture similarity (Haralick, Shanmugam,
and Dinstein 1973; see Fig. 1C). All texture analyses were carried
out using the package glcm (Zvoleff 2019) in R. Due to the nature
of strong intercorrelation between many measures of texture
(Haralick, Shanmugam, and Dinstein 1973; Szantoi et al. 2013;
Feng, Liu, and Gong 2015), we only derived the eight least corre-
lated texture layers on a 31 � 31 pixel moving window size. The
choice of moving window size and variables was based on find-
ings from Feng, Liu, and Gong (2015), identifying the lowest
model error rates for spatially predicting urban vegetation cover
from UAV imagery using these metrics. The 3 initial spectral
bands (RGB reflectance) and height from the CHM along with
texture layers produced 12 predictor variables, which were then
compiled as multi-layer raster-stacks for each garden to be used
as variable candidates in predicting land use.

Garden land use classifications and spatial arrangement

To train a model to predict garden land use and spatial arrange-
ments of all land uses, we created training polygons on true
color (RGB) representations of each garden’s orthomosaic
(Fig. 2A), classifying the gardens into six major land use classes:
impervious surfaces (Class 1), bare ground (e.g. major garden
paths (Class 2)), bare plots (e.g. bare soil, Class 3), large trees
(Class 4), crops (Class 5) and grasses and weeds (Class 6).
Polygons were placed and assigned land use classes through
image interpretation. As fine resolution imagery in homoge-
nous landscapes requires a larger number of pixels to derive ac-
curate classification (Chen and Stow 2002), a minimum of 20
polygons per class and garden were placed. These were then
used to extract all pixel data from the predictor variable raster-
stacks and train a random forests model (Breiman 2001) of gar-
den land use through supervised classification. All analyses
were carried out in R using the packages randomforest and caret
(Liaw and Wiener 2002; Wing et al. 2019).

We pooled extracted pixels from all gardens together to cre-
ate a universal model of land use. Extracted pixels were paired
with their respective identified land use class, randomly sub-
sampled to 6000 pixels per class (3600 pixels per garden in to-
tal) and then split into a training (80% of the total dataset) and
testing dataset (20% of the total dataset), based on the Pareto
principle (Newman 2005). We created an initial random forests
model using the default number of trees (500) on the training
dataset of each garden stack, using all available raster bands
(n¼ 12) as predictor and the land use class as response variable
(Pal 2005; Gislason, Benediktsson, and Sveinsson 2006).
Subsequently, we observed variable importance and model
performance of this model and removed variables with a Gini
index <1300 to create a less complex model, while preserving
(or increasing) model performance. In decision trees and data
prediction, the Gini Index (or “Gini impurity”) represents the
probability of a specific feature that is classified incorrectly if
selected randomly. Here, a Gini value of 0 is equal to ‘pure’
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classification of a single class, whereas the maximum value is
equal to completely random distribution across all predicted
classes. The cutoff at 1300 was chosen due to the clear contrast
in performance between the five least important and six most
important variables (Fig. 3). The mean decrease in accuracy
illustrates how much accuracy the model would lose, if the re-
spective variable was removed. The final model selected was
based on six predictor variables. We then used the model to
predict (i) to the test dataset of �7000 pixels (20% of total data-
set, 1200 pixels per Class 1–5, 1080 for Class 6, which was not
present in one garden) for model evaluation and (ii) to each
garden’s raster stack, to create classified images for further
analysis of spatial arrangement of gardens and garden plots.
We illustrate and explain a simplified version of our workflow
of training polygon creation, data extraction and model build-
ing and evaluation in the form of a tutorial in Supplementary
Appendix S2.

Universal model performance was evaluated from the pre-
diction to the test dataset (independent validation), using
(i) model accuracy, based on average absolute model error, and
(ii) Cohen’s Kappa, a measure of model reliability based on con-
fusion matrices (Elith et al. 2006; Cohen 1960). To quantify accu-
racy of predictions per use-class, we assessed sensitivity (true
positive rate; TPR) and specificity (true negative rate; TNR).
Further, we derived the true skill statistic [TSS ¼ (TPR þ TNR) –
1], representing matches and mismatches between observa-
tions and predictions (Allouche et al., 2006). TSS values range
from 0 to 1 and permit similar inferences as the Kappa statistic,
without being dependent on prevalence (Somodi et al. 2017).
Furthermore, we tested the performance of the universal model
in each garden separately through cross-validation, by extract-
ing the predicted land use class from the final garden classifica-
tion (Fig. 2B) with the polygon masks and comparing the
predicted values with the assigned values from image

Figure 1: Spatial data products from UAV imagery used for predicting garden land cover—(A) Garden-scale true-color orthomosaic compiled of RGB reflectance bands,

(B) CHM derived from UAV point cloud in meters and (C) mean texture similarity per pixel in %.

Figure 2: Example of training polygons placed using image interpretation on the RGB orthomosaic for the six land use classes (A) and final land cover classification for

the Essendon community garden (B).
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interpretation in a confusion matrix, using the same evaluation
metrics as in independent validation.

Relationship between field and aerial survey data

To test for relationships between field survey data and garden
classifications from UAV imagery, we calculated the area and
projected cover of each class on both the garden (n¼ 10) and
plot (n¼ 36) scale. We further derived the number of patches,
mean patch area and clumpiness as measures of connectivity
and spatial aggregation of each class using landscapemetrics
(Hesselbarth et al. 2019). A large number of patches or low
clumpiness value (on a scale from 0 to 1) indicates low aggrega-
tion of land classes, whereas low patch number or high clumpi-
ness indicate highly aggregated and connected classes
(Hesselbarth et al. 2019). We used generalized linear models
(GLMs) to test the relationships and correlations between field
and aerial survey data.

Results
Results of the field survey

Plant species richness (number of species per plot or garden),
vegetation height and cover measured in the field varied among
the garden plots and the community gardens. Total plant spe-
cies richness observed across all of the gardens was 32 species.
Mean plant species richness observed within garden plots was
19 species. Gardens and garden plots exhibited high variability
in plant species (68 species). The mean vegetation cover aver-
aged at 67.65% (625.9%) at the garden scale, and 97.3% (625.4%)
at the plot scale. A majority of the gardens and plots had
vegetation that averaged around 1 m in height, with the average

maximum height within plots around 2 m. Bare ground (no veg-
etation) was also present in gardens, with bare ground averaged
at 33% of plot cover (624.8%). Most garden plots harbored low
vegetation under 0.5 m in height.

Model selection and variable importance

The final model to predict garden land use classes was selected
based on highest model accuracy and Cohen’s Kappa, as well as
superior sensitivity (TPR) and specificity (TNR) compared with
models with all or other predictor variable combinations. The
best model utilized six variables, out of which height above
ground derived from the CHM was the most important based on
both mean decrease accuracy (490) and mean decrease Gini
(6402) (Fig. 3). Visible light reflectance on all available bands
(RGB) were together equally important in distinguishing land
classes from one another, while out of eight texture variables,
only two (mean and variance of pixel co-occurrence) were found
to improve model performance.

Model performance

Independent validation of the universal model documented
good model performance with overall prediction accuracy at
79.6% and a Cohen’s Kappa of 0.75, indicating substantial agree-
ment between observed and predicted values across classes
(Table 1). The best predictions were recorded for Classes 1 and 4
(impervious surfaces and trees), with TSS¼ 0.91, respectively,
indicating near perfect agreement. Crops (Class 5) and grasses
and weeds (Class 6) were predicted with substantial agreement
(TSS¼ 0.73 and 0.75, respectively). We observed the lowest
accuracy for bare soil (Class 3) and path cover classes
(Class 2), where �15% of pixels were classified incorrectly.

Figure 3: Variable importance according to mean decrease in model accuracy if the respective variable was removed (top) and Gini impurity index (bottom).
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Nevertheless, both classes reached TSS > 0.6 and were therefore
predicted with moderate agreement across all gardens (Fig. 4
and Table 2).

Testing the model on the garden scale through cross-
validation revealed that a universal model based on a sample
of pixels from multiple gardens can be used to predict land
classes across different garden landscapes. Although perfor-
mance varied, we observed high prediction accuracies between
73% and 86% and Kappa values of 0.65–0.8. The model per-
formed best in the Essendon community garden, reaching both
maximum accuracy and Kappa values. Although still perform-
ing to a level of substantial agreement between prediction and
observed land class, both Slater and Box Hill gardens had the
least accurate predictions (�70% accuracy and a Kappa of 0.66
each; Table 1). Best performances by cover class were observed
for the gardens Flemington, Essendon and Balwyn for Class 4
(large trees), all reaching TSS � 0.95. In Balwyn we also
observed the highest TSS for crops (Class 5) with 0.93, as
well as the lowest prediction performance by class (TSS¼ 0.13
for grasses and weeds; Supplementary Fig. S2 and Table S2).
Mean observed TSS by class throughout all gardens was
0.72 (60.19).

Land use and garden arrangement from spatial
predictions

An analysis of land use based on our spatial land use classifica-
tions (Fig. 2B) for the 10 urban gardens revealed similar distribu-
tion of land use classes between gardens, with crops (Class 5)
covering on average the largest area (by proportion), followed by
pathways (Class 2, Fig 5A). Based on the clumpiness metric from
landscapemetrics, the most aggregated class on the garden level
was tree crowns, with values close to maximum aggregation (i).

The least aggregated and most patchy class was ‘grasses and
weeds’ (Class 6, Fig. 5B and C). Crops were less patchy, with an
average clumpiness of 0.88 (60.03). Similar patterns were ob-
served on the plot level (Supplementary Fig. S3 and Table S3).

Correlation between field and aerial survey data

When comparing land use metrics such as area or percentage
cover that were collected on the ground and derived from the im-
agery, we found some relationships between remotely sensed
land use classes and field survey data both at garden scale and at
the plot scale. Observed bare soil cover in the field was estimated
by multiple land use metrics such as area of the ‘bare’ land use
class or area of the ‘paths’ and ‘soil’ use classes. Grass cover mea-
sured in field surveys was predicted by percent area of the re-
motely sensed ‘grasses and weeds’ land use class. Surprisingly, no
direct relationships were found between crop or vegetation cover
field survey measurements and remotely sensed classes.

Using GLMs, we found that derived landscape metrics from the
predicted land use classes were useful to estimate observed plant
species richness on both garden and plot scale. There was
a significant relationship (P< 0.001, R2 ¼ 0.45) between (log-
transformed) number of patches and observed species richness in
field surveys. Here, species richness increased in gardens with an
increasing number of patches and thus a spatial disaggregation of
crop vegetation cover (Fig. 6A). Similarly, the predicted (and log-
transformed) class area of crops (Class 5) was also
positively correlated to species richness (P< 0.05, R2 ¼ 0.53), where
the number of species increased with increasing crop area
(Fig. 6B). We found similar relationships also held true on the plot
scale for these vegetation variables. The number of species in
each plot was significantly related to the number of patches as
well as vegetation class area (P< 0.01). At this scale, crop area was
not significant in describing species richness and the explained
variability was lower than at the garden scale (R2¼ 0.17).

Discussion

Heterogeneous and fine-scale land use systems in urban areas
can be predicted from high-resolution aerial imagery collected
by a commercial UAV. We found that a universal supervised
classification model can be trained on a random sample of
pixels from aerial imagery, which was assigned land use clas-
ses through image interpretation. The universality of our
model demonstrates that a small subset of data may accu-
rately predict land use in a range of other or potential future
data sets. The results have great potential for applications to
other urban green systems with high plant diversity and high
patchiness in land use. Importantly, however, while overall
performance can be meaningful, we also suggest that model
classification and performance should be conducted for each
system separately. This study builds upon previous work in
other urban systems and agroecosystems on the application of
UAVs and predictive modeling approaches to rapidly assess
and predict urban land uses and their spatial characteristics
(Feng, Ling, and Gong 2015; De Luca et al. 2019; Vilar et al. 2020;
Gibril et al. 2020), important metrics related to ecosystem
function and services.

In sum, our work in an increasingly relevant and heteroge-
neous urban land use system provides three new contributions
to the field: (i) commercial drone technology can be used to ac-
curately predict and map common land uses in urban gardens;
(ii) all predictor variables of urban garden land use can be de-
rived from standard aerial photo images without the need for

Table 1: Model validation results for independent and cross-
validationa

Model validation Gardenb Metric Value

Independent validation All Accuracy 0.8
Kappa 0.76

Ashburton Accuracy 0.84
Kappa 0.80

Balwyn Accuracy 0.86
Kappa 0.82

Box Hill Accuracy 0.73
Kappa 0.66

Essendon Accuracy 0.86
Kappa 0.83

Cross-validation Flemington Accuracy 0.85
Kappa 0.81

Hawthorn Accuracy 0.76
Kappa 0.70

Jolimont Accuracy 0.78
Kappa 0.70

Rushall Accuracy 0.83
Kappa 0.78

Slater Accuracy 0.74
Kappa 0.67

Western Brunswick Accuracy 0.81
Kappa 0.75

aBoth accuracy and Cohen’s Kappa are on a scale from 0 to 1 where 1 means

100% accuracy or perfect agreement.
bGarden is the name of each garden site examined.
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costly sensor technology; and (iii) plant species richness (num-
ber of species) can be estimated from these spatial predictions
with implications for future survey methods.

Important predictors of urban garden land use and
model performance

We successfully modeled and spatially mapped land use in
urban garden systems using UAV remote sensing of visible light

reflectance (RGB bands), canopy height and image texture.
Vegetation or structural height from the UAV CHM was the
most meaningful predictor to distinguish different cover clas-
ses. Land use classes such as grasses and weeds, crops or trees
all expressed distinct differences in heights above the ground,
even if sharing similar light reflectance (Fig. 1A and B), which
may explain the importance of this variable. CHMs have been
used to improve land use classification in other ecosystems
such as forests (Räsänen et al. 2014), whereas generally they are
employed for tree detection approaches from photogrammetry
or LiDAR (see e.g. Stone et al. 2016; Mohan et al. 2017; Swinfield
et al. 2019). Their usefulness in classifying mostly tree-less
systems with very low canopy heights is promising and should
be further explored. Nevertheless, for cover classes that had
less distinguishable height differences, such as bare ground in
garden plots and paths between plots, our model had lower
accuracy. This illustrates why we produced high accuracies for
classes with distinct differences in height and highlights the
limitation of this variable. These limitations may be overcome
by adding spatial restraints and neighborhood dependencies to
classifications. As high-resolution image pixels are much
smaller than the entities targeted by modeling and mapping

Figure 4: Confusion matrix of independent model validation of the six land cover classes, comparing observed and predicted pixels for the six land cover classes.

Numbers are pixel counts with color gradient indicating into which class combination the majority of pixels were classified to. Right percentages in tiles indicate the

fraction of pixels in each row this tile makes up, lower percentages the fraction of pixels per column. Larger numbers, percentages and darker shades in the center indi-

cate correct predictions, where observed and predicted land cover class matched. For example, the top-left tile shows that 861 pixels were correctly classified as class

6–grasses and weeds, (�78.4% of all pixels in that column and 79.7% in the row), whereas the tile below indicates that 183 pixels, observed to be in class 6 were falsely

predicted to be class 5 - crops (�16% of all pixels in column and row).

Table 2: Classification evaluation for land cover classes (Classes 1–6)
from the independent validation confusion matrixa

Cover class Sensitivity Specificity Balanced accuracy TSS

Impervious 0.94 0.97 0.95 0.91
Paths 0.67 0.95 0.81 0.62
Soil 0.71 0.94 0.83 0.65
Trees 0.93 0.98 0.95 0.91
Crops 0.78 0.96 0.87 0.73
Grasses

and weeds
0.78 0.96 0.87 0.75

aAll evaluation metrics are scaled from 0 to 1 where 1 is the highest possible

performance or evaluation agreement.
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cover classes, a grouping of pixels into objects before classify-
ing them, may increase accuracy in predicting classes that are
similar in height and/or topography. Here, OBIA is an option
(Herold, Liu, and Clarke 2003; Thomas, Hendrix, and Congalton
2003; Cleve et al. 2008), aspects of which we covered by adding
texture variables to our supervised classification model.
However, when optimizing model performance, the final
model contained only two metrics of image texture (mean and
variance of texture similarity), which were the least important
predictors (Fig. 3). Nevertheless, future research should focus
on improving prediction accuracy in urban gardens by explor-
ing and comparing further methods of image classification.
Visible light reflectance was together equally important in dis-
tinguishing cover classes as the CHM (Fig. 3). The RGB bands
are the most easily acquired and processed data from

commercial UAV imagery. They were found to be capable of
distinguishing even similarly reflecting land use at the very
high resolutions achievable from UAV or satellite imagery,
when coupled with aspects of OBIA, such as measures of tex-
ture from GLCM, as e.g. demonstrated by Feng, Liu and Gong
(2015) or Ayhan and Kwan (2020), which we could also confirm
in this study for a new urban environment.

Predictive capacity in relation to field surveys

Our findings help to understand and predict plant species diver-
sity with a spatially explicit perspective. The best land use clas-
ses predicted by our models included bare ground cover
and tree cover, providing evidence for a rapid assessment of
either no vegetation or high vegetation within gardens. These

Figure 5: Spatial arrangement statistics from spatial land cover predictions, extracted at the garden scale (n¼ 10) for the six predicted cover classes.

Figure 6: Variable dependence plots for GLM models of species richness using number of patches (A) and crop area (B) on the garden scale from spatial land classifica-

tions as predictor variables. Both number of patches and crop area are standardized (scaled to mean and standard deviation of the respective variables).
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land use classes in turn relate to ecosystem functions such as
microclimate regulation (Lin et al. 2018), invertebrate habitat
(Quistberg, Bichier, and Philpott 2016), or the potential for
increasing production capacity (Clinton et al. 2018). Similarly,
the predicted class area of crops and vegetation was positively
correlated to species richness, suggesting that as the area of
crop increased, the number of species also increased. This spe-
cies–area relationship has implications for space use and func-
tion in urban gardens by supporting the idea that provided
more space to cultivate, gardeners may plant more plant spe-
cies which in turn support biodiversity (van Heezik et al. 2013;
Clucas, Parker, and Feldpausch-Parker 2018) and ecosystem
functions and services (Lin, Philpott, and Jha 2015). Indeed,
home gardens may be more diverse than forest ecosystems in
some urban contexts due to the mix of native remnant vegeta-
tion and ornamental and crop plants and this may e.g. support
native bee fitness (Kaluza et al. 2018). Greater crop heterogene-
ity may also reduce (or dilute) pest populations and support nat-
ural enemies (Lowenstein and Minor 2018) and pest control in
UA (Arnold, Egerer, and Daane 2019). Thus, the capacity to
quickly characterize such species–area relationships within ur-
ban vegetation communities could allow rapid assessments of
(or at least informed speculation about) pollination and pest
control services.

Despite some strong relationships between field observa-
tions and drone surveys, inconsistent relationships may argue
for improving field observations at appropriate scales to then
better support model predictions using machine learning. In
our study, conflicting methods of assessing land cover and use
might have been used, which may be incompatible with re-
motely sensed data. For example, our results highlight the im-
portance of spatial scale in such research (Wang et al. 2009;
Cavender-Bares et al. 2017), where relationships depend on
the scale at which habitat features were measured. Previous
studies in urban forests argue for spatial scale correction to fix
misclassification of land use types by UAVs (Feng, Liu, and
Gong 2015). Furthermore, because the size and structure of a
plant (e.g. thin and tall) may reduce a UAV sensor’s capacity to
capture the vegetation, future research that combines field
survey observations with remote sensing should aim to sys-
tematically measure multiple layers of vegetation (Egerer et al.
2020).

Predicting spatial arrangement of land use

Spatial arrangement and aggregation of land uses were strongly
associated with plant species richness observed in the field. The
ability to predict and relate spatial aggregation in relation to
species diversity in urban gardens provides just a starting point
to predict and look at relationships between land uses within
the system. Patchiness and land use spatial arrangements are
important in relation to biodiversity and ecosystem functions,
especially in urban agricultural systems and urban habitats that
can exhibit abundant and diverse insect populations (Lin, Liu,
and Gong 2015; Egerer, Bichier, and Philpott 2017; Baldock et al.
2019). In urban areas, spatial aggregation in vegetation patterns
is largely driven by social factors, where vegetation manage-
ment decisions are influenced by residents’ preferences for ur-
ban vegetation as a function of certain attitudes about the form
and function of said vegetation, but also social norms (Ives and
Kendal 2014). Front yards have different vegetation patterns
than back yards (Locke et al. 2018), whereas neighbors share
similar and spatially aggregated vegetation and land use pat-
terns (Marshall, Grose, and Williams 2019). This spatial

aggregation of vegetation patterns at a yard to neighborhood
scale can further scale up to the city scale (Ossola et al. 2019b).
Thus, our work further supports and works to elucidate the spa-
tial characteristics of urban vegetation.

Implications for urban ecosystem service provision and
future directions

Our model results suggest that methods of supervised land clas-
sification could be widely applied to other gardens and urban
ecosystems. The land use classes we assessed have important
implications for biodiversity conservation and ecosystem ser-
vice provision in urban agricultural systems. For example, the
aggregation and spatial arrangements of bare soil- or flower
patches may strongly influence bee diversity and abundance in
a garden through impacts on nesting and flower resource avail-
ability (Plascencia and Philpott 2017). Bee habitat provision may
in turn have implications for crop pollination services (Werrell
et al. 2009; Cohen et al. 2021). Predicting canopy cover of trees or
tall crops allows drawing implications for climate regulation
(Lin et al. 2018; Rost et al. 2020) and aesthetic benefits
(Fernandes et al. 2019; Egerer et al. 2019). A rapid assessments of
crop land use can inform the food production capacity of an in-
dividual garden or multiple gardens within a city to inform food
provision and security benefits. This may be especially impor-
tant in the Global South and cities where UA highly contributes
to food security but is difficult to assess and quantify its land
use and social impact. Spatial predictions of land use in urban
gardens could be further improved with the use of multi- or
hyperspectral sensors allowing a plant genus- or species-level
classification of individual areas (see e.g. Zhang and Qui 2012;
Hakkenberg et al., 2017; Liu et al., 2017). Although such sensors
would decrease accessibility and affordability in efforts to de-
rive more detailed spatial classification of urban ecosystems,
they would allow additional measures of vegetation complexity
such as plant cover or density or remote predictions of plant al-
pha- and beta diversity, which would greatly improve our un-
derstanding and ability to monitor these small scale but highly
heterogenous landscapes.

In addition, it would be important to employ gardener sur-
vey questionnaires to determine relationships between remote
sensing, ecological field surveys and people’s reported experi-
ence and benefits within a space. Furthermore, this method
offers excellent potential to continuously survey land use
change to quantify and characterize changes in seasonal land
use, as the crops grown in gardens and land uses within gar-
dens change throughout the year. Although we were limited to
one image per garden during the growing season, the benefits
of affordable commercial UAVs that can be harnessed in future
work are to collect multiple sets of images over the course of a
growing season or entire year and to allow for spectral contrasts
between seasons, which may enhance class discrimination.
Multi-season data collection may therefore be another way to
improve classification and help quantify changes in plant
species diversity and crop productivity. Thus, an important
consideration for future research is to avoid compensating
accuracy for e.g. more survey sites or repeated assessments;
finer spatial scales are still recommended for the best assess-
ments possible.

Conclusion

We demonstrate that methods in spatial land use analysis can
be effective to predict small scale and highly heterogeneous
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(urban) habitat patches in the form of urban community gar-
dens. Land classifications have never been done before using
UAVs in urban gardens— ecosystems that highly vary in land
use, spatial arrangement and function—to offer a novel contri-
bution to the literature in urban environments. The increasing
relevance and utility of urban ecosystem service assessments
for urban planners and city policy makers means that such land
use classification and characterization methods could offer an
important, increasingly accessible and cheap tool to map and
assess complex urban habitats and landscapes. Having custom-
izable, UAV-enabled opportunities to monitor important and
growing urban land use such as UA could be extremely helpful
to researchers, planners and designers at different urban scales.
Furthermore, such assessments can justify the importance and
value of urban gardens and UA generally as service providing
systems that contribute to the sustainability and livability of
cities—what urban planners seek to achieve.
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