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Abstract 

Predictions of species’ current and future ranges are needed to effectively manage species under 

environmental change. Species ranges are typically estimated using correlative species distribution 

models (SDMs), which have been criticized for their static nature. In contrast, dynamic occupancy 

models explicitily describe temporal changes in species’ occupancy via colonisation and local 

extinction probabilities, estimated from time series of occurrence data. Yet, tests of whether these 

models improve predictive accuracy under current or future conditions are rare. Using a long-term 

dataset on 69 Swiss birds, we tested whether dynamic occupancy models improve predictions of 

distribution changes over time compared to SDMs. We evaluated the accuracy of spatial predictions 

and their ability to detect population trends. We also explored how predictions differed when we 

accounted for imperfect detection and parameterised models using calibration datasets of different 

time series lengths. All model types had high spatial predictive performance when assessed across 

all sites (mean AUC > 0.8), with flexible machine-learning SDM algorithms outperforming parametric 

static and dynamic occupancy models. However, none of the models performed well at identifying 

sites where range changes are likely to occur. In terms of estimating population trends, dynamic 

occupancy models performed best, particularly for species with strong population changes and 

when fit with sufficient data, while static SDMs performed very poorly. Overall, our study highlights 

the importance of considering what aspects of performance matter most when selecting a modelling 

method for a particular application and the need for further research to improve model utility. While 

dynamic occupancy models show promise for capturing range dynamics and inferring population 

trends when fitted with sufficient data, computational constraints on variable selection and model 

fitting can lead to reduced spatial accuracy of predictions, an area warranting more attention.  

Introduction 

Species are shifting their ranges in response to changes in land-use and climate. Range shifts have 

been empirically documented for a variety  of taxa (Parmesan & Yohe, 2003). However, empirical A
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data typically only capture information about species occurrence or abundance in a subset of places 

and times. To derive a more complete picture of where species are likely to occur both now and in 

the future, we typically rely on species distribution models (Guisan & Thuiller, 2005). 

Correlative (static) species distribution models (SDMs) describe the likely occurrence or abundance 

of a species as a function of environmental covariates (Elith & Leathwick, 2009). In addition to 

predicting the probability of species occurring in unsampled regions or under altered environmental 

conditions, SDMs are often used to understand and infer possible drivers of species distributions  

(Kelly et al., 2017) and to predict species’ range or population trends or future extinction risk (Keith 

et al., 2014; Zhang et al., 2017). However, there is growing recognition that SDMs can provide 

misleading predictions, particularly when used to forecast species responses to environmental 

change (Sequeira et al., 2018; Sofaer et al., 2018) or when applied to species that are not in 

equilibrium with their environment (Elith et al., 2010). Researchers have argued that explicitly 

modelling the processes that underlie changes in distribution and abundance across the landscape 

may be important for forecasting range dynamics accurately (Briscoe et al., 2019; Joseph, 2020; 

Urban et al., 2016; Yackulic et al., 2015; Zurell, 2017). Furthermore, by explicitly identifying and 

testing mechanisms that drive range dynamics at the population or individual level, such process-

explicit models can provide critical insights and inform effective management of species under 

environmental change (Fordham et al., 2013; Merow et al., 2017). 

In addition to accounting for dynamics, several studies have highlighted the importance of 

accounting for observation errors when inferring range shifts or using occurrence data to model 

species distributions (Kujala et al., 2013; MacKenzie et al., 2002). Even when data are collected using 

well-planned survey designs and focus on sessile organisms (Chen et al., 2013), species are not 

always detected when they are present, and variation in detectability across environments can lead 

to misleading predictions that more closely resemble where we are able to detect the species rather 

than where the species truly occurs (Kéry, 2011; Lahoz-Monfort et al., 2014).   
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Many different methods have been proposed for incorporating processes explicitly into models of 

range dynamics (Briscoe et al., 2019); however, data to adequately fit these models are often lacking 

(Urban et al., 2016). Process-explicit models can also be very complex, often requiring additional 

expertise, species-specific knowledge and computational resources that make their implementation 

challenging (Hefley et al., 2017). Further, several model-comparison studies have shown that more 

complex process-explicit models do not always improve predictions compared to simpler correlative 

SDMs, although this depends on the underlying dynamics and time horizon (Briscoe et al., 2016; 

Fordham et al., 2018; Zurell et al., 2016). 

Among the suite of available modelling tools, dynamic occupancy models may represent a good 

‘trade-off’ between model complexity and realism: they use the same type of data as static SDMs 

(occurrence data, compared to, e.g. abundance or demographic data required by other process-

explicit models), but describe more closely the processes that underpin range dynamics by explicitly 

modelling species colonisation and local extinction events at sites using data collected across time 

(Kéry et al., 2013; MacKenzie et al., 2003). Unlike static correlative SDMs, dynamic occupancy 

models do not assume that species are in equilibrium with their environment. They can also account 

for imperfect detection if data are collected so they are informative about the observation process, 

e.g. if repeat surveys or time-to-detection data are available within sampling seasons 

(Guillera-Arroita, 2017); but can otherwise be fitted without the observation component (Kéry & 

Royle 2021). These methods, also known as multiseason occupancy models, have typically not been 

included in studies comparing correlative SDMs with a range of process-explicit methods (Fordham 

et al., 2018; Pagel & Schurr, 2012; Zurell et al., 2016). But single-species studies have highlighted 

their utility for predicting range dynamics across both local and broad spatial scales (Clement et al., 

2016; Heard et al., 2015; Santika et al., 2014).

Here, we aim to evaluate, across many species, the potential advantages of i) accounting for 

dynamics via explicitly modelling colonisation and extinction processes, and ii) accounting for 

imperfect detection when describing and predicting spatio-temporal patterns of species A
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distributions. To this end, we fitted four different types of models: static correlative species 

distribution models (SDMs) and dynamic occupancy models (DOMs) that do not account for 

imperfect detection, as well as their counterparts, static occupancy detection models (SODMs) and 

dynamic occupancy detection models (DODMs) that do account for imperfect species detection. We 

expected that dynamic occupancy detection models would perform better when species are not in 

equilibrium, and when detection probability is low. To reflect the breadth of modelling approaches 

currently used, we included correlative SDMs with different abilities to capture simple to complex 

covariate relationships and with contrasting variable selection approaches.  

Both data limitations and the lack of independent model evaluation have been highlighted as key 

challenges hampering broader and improved use of process-explicit models of range dynamics 

(Briscoe et al., 2019; Urban et al., 2016). We address this gap by evaluating predictive performance 

of dynamic occupancy detection models (and related simpler methods) fitted to varying amounts of 

data. We used the Swiss national common breeding bird survey, Monitoring Häufige Brutvögel 

(MHB) (see also, for instance Kéry & Schmid, 2006; Schmid et al., 2004), which provides suitable data 

for accounting for detection (repeat surveys in each year) over a time period (14 years) during which 

range changes are known to have occurred for at least some species (Knaus et al., 2018). The 

dataset includes species with different ecologies that show a variety of responses to recent changes 

in climate and land-use (Knaus et al., 2018; Maggini et al., 2011). Critically, the timespan over which 

data were collected allowed us to use different subsets of the dataset for model fitting (3-10 years), 

while setting aside the remaining years (4-11) as an independent dataset on which to evaluate 

model predictions.  

Methods

Species data

We used data from the Swiss breeding bird survey from 2000-2013. The survey data were collected 

within the MHB (Monitoring Häufige Brutvögel; the Swiss common breeding bird survey) which A
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covers 267 sampling sites (1 km2 cell) every year. We used additional data from the Swiss 

Biodiversity Monitoring (BDM), which covers an additional 267 cells in a five-year rotating scheme 

(approx. one-fifth each year; 2001-2013), to test model predictions at independent sites. Within-

season replicate surveys (2-3) at each 1 km2 sample site allowed us to fit occupancy models that 

accounted for imperfect detection. Data were cleaned to exclude observations from outside each 

species’ breeding season (described in Kéry & Schmid, 2006) and surveys without dates recorded 

(date was used as covariate to model detection). From this ‘cleaned’ MHB dataset, we included in 

our analyses all species (excluding waterfowl) that were observed in at least 50 sites across all time-

periods used (n = 69 species). Waterfowl were excluded because we had insufficient environmental 

data for their key habitat (water). 

Since there was more than one observation per year, methods were needed to deal with the within-

year repeat visits when fitting models assuming perfect detection. We considered two approaches: 

(a) “collDet”, collapsing all within-year data at a given site to one value, with a presence assigned if 

the species was observed in any survey, and absence otherwise; (b) “det2”, using the observed 

record from the second survey of the year (peak breeding season), mimicking datasets with only one 

visit per year. We tested both approaches on the static SDMs. As results were not very sensitive to 

the approach used (see Results), we fitted the dynamic occupancy models, which take longer to run, 

only with “collDet”. “collDet” datasets were always used for model evaluation. 

The BDM data were used for independent evaluation only and were not included in the training 

data. In the MHB dataset, high mountain sites are underrepresented, while in the BDM data set, 

sites occur closer to their proportion in the Swiss landscape. Thirteen species were not detected in 

the BDM dataset, so independent evaluation was not possible for these species. 

Static site covariates

We used static land use layers summarising the proportion of each type of landcover in each 1 km2 

cell. Swiss land use statistics were available for two timepoints: collected over the years 1992-97 and A
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2004-2009 (GEOSTAT). We used the land use data from the later years (2004-2009) as these 

overlapped most closely with our occurrence data. We collapsed the general land-use categories 

(n=17, Aggregation NOAS04_17) into 10 broad classes that captured the key aspects likely to 

influence bird species (Table S1.1, Fig. S1.1).

Dynamic site covariates

We used monthly CHELSA timeseries climate data (http://chelsa-climate.org) to derive relevant 

yearly climate predictors that may influence bird range dynamics. These included mean annual 

temperature (bio1), temperature seasonality (bio4), yearly annual precipitation (bio12), 

precipitation seasonality (bio15), as well as precipitation in the wettest and driest months (bio13, 

bio14). We also included maximum temperature in the warmest month (bio5) and minimum 

temperature of the coldest month (bio6) to account for the effect of temperature extremes. 

Mean and standard deviation of NDVI was calculated each year using monthly NDVI data obtained 

from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices 

(https://lpdaac.usgs.gov/products/mod13a3v006/). These variables were included to quantify shifts 

in the tree-line over time (not captured by the static land-use layers), and to help differentiate forest 

types (e.g. non-deciduous needleleaf differs less across the year so standard deviation is likely to be 

lower) and regions that show stable or highly variable patterns of productivity. 

 

Survey covariates

When modelling detection, we considered date (day of the year on which the survey was conducted) 

with a quadratic term as a predictor for detection probability because it influences detection of bird 

species in this dataset (Kéry & Royle, 2016). We also allowed for an interaction between date and 

elevation, to account for variation in seasonal patterns of detection across elevations (e.g. see Kéry 

et al. 2013). Models with interaction terms between survey date and elevation also included the 

main effect terms.  A
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Variable pre-filtering

From the full set of 20 potential site covariates, we selected a subset of 14 variables that were not 

substantially correlated (|r| < 0.7) and that captured the key axes of environmental variation across 

the study region and over all years – a pragmatic approach when modelling a diverse range of 

species. To do this, in every year we performed a Principle Component Analysis (PCA) to assess how 

much environmental variation each variable captured across the study region. Then, for each 

principal axis, starting with the first, we selected the variable with the highest loading and assigned it 

a rank based on the variation explained by that principle axis (i.e. the variable with the highest 

loading on the first axis had a rank of one). Across the 20 PCA axes, this gave a set of 20 variables 

with rank 1-20, but there may be duplicates (since the same variable might load first on different 

axes). Duplicates were removed. For the set of variables selected, we then assessed all pairwise 

correlations using Spearman’s rank correlation. Pairs with an absolute value above 0.7 were 

considered correlated (Dormann et al., 2013) and therefore the variable with the lower rank was 

removed, with the exception that priority was given to variables that quantified yearly changes 

(climate and NDVI) because of our focus on modelling how species’ ranges change over time. We 

retained the 14 top-ranked variables summed across years. The final set of candidate predictors 

included six dynamic variables (bio4,5,12,14,15, standard deviation of NDVI) and eight static 

landcover variables (LC5, 6, 8, 9, 10,11, 12, 13_17). Continuous predictors (climate, elevation, date 

and NDVI variables) were standardized before analyses by subtracting the mean and dividing by the 

standard deviation. 

Model fitting

Five modelling approaches were used to cover axes of dynamics (yes or no), detection error (yes or 

no) and model structure (Table 1). All models were fitted to three datasets (hereafter training 

datasets) which included data from the first three years (2000-2002), the first five years (2000-

2004), and the first ten years (2000-2009) of surveys, respectively. Dynamic site covariates were all 

sampled at the year matching the year of observation. Predictions were made to all years (2000 to 

2013) using year-specific dynamic covariates. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

We aimed to fit the models in ways that would be typical for good usage of the methods, and 

feasible across multiple species. For all models other than Boosted Regression Trees (BRTs), we 

further reduced the set of predictors by fitting univariate models of occurrence, including linear and 

quadratic terms, and selecting the environmental variables from the four top models as ranked using 

AIC. For models that account for imperfect detection, univariate models of occurrence included a full 

model for detectability: 

p ~ date + date2 + elev + date:elev + date:elev2.     eq1

This sub-setting of potential covariates was necessary to reduce the number of candidate models, 

which scales to the 2n where n is the number of terms included in the model; for dynamic occupancy 

detection models, this includes each term considered for initial occupancy, colonisation, extinction 

and detection (e.g. for 4 environmental co-variates and 3 survey co-variate sets we fitted 12,288 

DODMs). We used a ‘data driven’ approach for model selection (preselecting predictors based on 

model fitting) because, with the exception of survey covariates, we did not have a priori hypotheses 

about the variables driving each process, and our aim was to fit the best model rather than to make 

inferences about the importance of individual variables. 

In contrast, we offered the full set of 14 candidate variables for BRTs, following common practice in 

applying machine learning methods (Merow et al., 2014). Our approach meant that there were 

differences in the steps taken to identify the best models when using different approaches, which 

could influence how well they performed. However, these differences were driven by the practical 

realities and features of the underlying methods, and thus are justifiable. The ability of BRTs to 

contend with a relatively large set of candidate variables is a strength of this approach, and thus it 

may unfairly disadvantage them if models were only fit to a much smaller subset of variables. We 

further explored the impact of these decisions by fitting BRTs with only the subset of variables used 

to fit DODMs. A
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Dynamic and static occupancy models were fit using the colext and occu functions in the R package 

‘unmarked’ (Fiske et al. 2019), which uses maximum likelihood methods for parameter estimation. 

For each species, we fit all candidate models where either initial occupancy, colonisation and 

extinction (DODMs) or occupancy (SODMs) were modelled as a function of the four selected 

environmental variables, including both linear and quadratic terms (i.e. we tested every combination 

of retained predictors in each model component). Detection was modelled in three ways: as 

specified above (eq1), as a function of date only (linear and quadratic terms), or assumed to be 

constant. We fitted all models, with the constraint that linear and quadratic terms for a variable 

were always included together, and selected the ‘best’ model using AIC.  When fitting static 

occupancy models, each site-by-year combination was treated as a site (i.e. we temporally-matched 

each species observation with the environmental conditions at that site in the survey year). To fit 

dynamic occupancy models (DOMs) ignoring imperfect detection, we re-ran the analysis as above 

but forcing the detection probability parameter to be one by “tricking” the software. To achieve this, 

we duplicated the aggregated collDet data (i.e. whether the species was ever detected at the site in 

each year) to fit models, therefore mimicking perfect detection (as in e.g. Kéry et al 2013). We then 

followed the same variable selection strategy as above.

GLMMs were fitted using glmer in the package lme4 (Bates et al., 2015, p. 4) with year as a random 

effect to model potential differences in general suitability between consecutive years. As for the 

static and dynamic occupancy detection models, we fitted all models with four environmental 

covariates and linear and quadratic terms, choosing the most parsimonious using AIC. 

One challenge when fitting complex models with multiple covariates via maximum likelihood 

estimation is that the numerical optimization algorithms sometimes may identify local rather than 

global optima (Guillera-Arroita et al., 2014; Kéry & Royle, 2021). To reduce the risk that static and 

dynamic occupancy models and GLMMs used for prediction suffer from this problem, we fitted all 
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models with 10 sets of starting values for the regression parameters (uniformly distributed between 

-1.5 and 1.5) and kept the overall best model with the lowest AIC.

BRTs were fitted using packages: gbm and dismo – specifically the gbm.step function in dismo 

(Hijmans et al., 2017). Since there are multiple observations per site given repeat sampling in 

different years, the internal cross-validation used to tune the complexity of BRTs was structured so 

that all records for a site were within the same fold (Read et al., 2011). This means that the internal 

estimate of predictive performance, which is used to tune the model, is based on sites not included 

in the training dataset. Following the methods and explanations of Elith et al. (2008), we aimed to fit 

at least 1000 trees in each BRT model. To achieve this, we set individual values for the learning rate 

(lr) and tree complexity (tc) on a per-species basis (based on the number of records per species), 

testing different values of lr and tc if the number of trees in the final model was below 1000 or over 

10000. Final learning rates varied from 0.005 to 0.0005, and tree complexity from 1 to 2, which 

resulted in relatively simple trees. 

We provide detailed model descriptions in Appendix S3 following the ODMAP protocol (Zurell et al., 

2020), including details of computational time. 

Model prediction 

For static methods, occupancy predictions were generated by simply applying the selected best 

model to all years of environmental data (2000-2013) to compute site occupancy probability. For 

dynamic methods, predictions were generated by simulating the likely future occupancy status of all 

cells in the landscape. To do this, we ran 5000 simulations using the probabilistic estimates of initial 

occupancy, colonisation and extinction functions from the fitted model, drawing the occurrence 

state of each site (0/1) accordingly at each time step. Models were run for the entire study period 

(2000-2013). 
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Model evaluation

Model evaluation focused on testing both the spatial predictions of models and assessing how well 

they captured range-wide temporal trends in occupancy and abundance (overview in Fig. 1).  To 

evaluate the spatial predictive ability of our models, we compared our occurrence predictions to the 

observed data. As noted by Kéry et al. (2013), when data are such that cumulative detection is 

imperfect, this comparison indicates the model’s ability to predict the combination of occurrence 

probability and detection probability (Yackulic et al., 2012), but does not directly measure how well 

the model predicts species occurrences. For methods that account for imperfect detection (DODMs 

and SODMs), we therefore evaluated models using predictions of both occurrence probability and 

the combined outcome of occurrence probability and detection probability (Lahoz-Monfort et al., 

2014) when survey information were available. 

We evaluated spatial predictions of models using mean yearly AUC (Area under the ROC Curve) and 

% deviance explained, using both the entire MHB dataset and only the test years not used for fitting 

models (i.e. temporally independent data). AUC provides a measure of model discrimination 

(whether occupied sites are consistently ranked higher than unoccupied sites), whilst % deviance 

explained compares the deviance explained by the model with that of a null model that estimates 

species prevalence in each year (i.e. the proportion of sites where the species was detected). We 

constrained % deviance explained to 0-100% to avoid negative values when models perform worse 

than the null. We obtained these metrics first using all surveyed sites and then focusing only on sites 

that showed some occupancy change (i.e. were both occupied and unoccupied across the study 

period), in order to more specifically assess how well models predicted range changes. For this, we 

also calculated the correlation between the change in predicted occupancy from year 1 to year 14 

and the corresponding change in observed occupancy status, across all sites. Finally, we calculated 

AUC and % deviance explained using detection – nondetection data from BDM surveys (not used for 

model fitting), at sites at least 2km away from sites used for model fitting (i.e. considered to be 

spatially independent data).
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We evaluated the model’s ability to capture and predict species’ temporal trends using the C-index 

(Harrell et al., 1982; hereafter temporal AUC). The C-index is a generalisation of AUC, originally 

developed for survival data (Cook, 2007). Here we applied it to trends in populations. It quantifies 

the probability that the ranking of pairs of predictions matches the rankings of the observations 

used for testing. We compared predicted species trends summarized using yearly sums of the 

estimated probability of occupancy across the landscape (the expected area of occupancy, AOO), 

with trend estimates produced by the annual Swiss Breeding bird indices, which provide an index of 

relative changes in population size (Knaus et al., 2020), for the full period 2000-2013. This is an 

interesting comparison because, despite their limitations (see Discussion), SDM outputs are 

sometimes used to infer trends in abundance. We also did these calculations comparing predicted 

trends to the number of survey cells observed to be occupied (the observed area of occupancy) in 

the MHB dataset. We calculated C-index values using the rcorr.cens function in the Hmisc package 

(Harrell, 2019). 

Selected variables, fitted responses and spatial predictions were also assessed via visual checks for a 

representative sub-set of species showing varying population trends and ecologies. Although we 

tried to ensure good model fits, this was not possible for all species and data combinations, 

particularly when shorter training datasets were used. 

Comparative analyses of model performance

Finally, we explored how modelling choices and species’ range characteristics affect model 

performance. These analyses (details in Appendix S2) included (1) modelling the relationship 

between performance (spatial and temporal AUCs) and aspects relating to modelling approach 

(method, training dataset) and range characteristics (prevalence, population trend and range trend); 

and (2) evaluating paired differences in model performance (AUC) and model agreement (mean 

difference in cell-based estimates of occurrence) for both static (SODMs/GLMMs or BRTs) and 

dynamic models (DODMs/DOMs) in relation to both species’ detection (mean detection from raw 

occurrence data) and training dataset. To generate indices of population trends for the above A
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analyses, we fitted generalised linear models as a function of year to observed Swiss-wide 

population trends 2000-2013, as provided by the Swiss Bird Index (Knaus et al., 2020). We estimated 

regression coefficients (b), which we also used to classify species into broad categories for 

visualisation and interpretation purposes, as follows: strongly increasing (b >= 0.05), increasing (0.05 

< b > =0.01), stable (0.01 < b >= -0.01) or decreasing (b < -0.01), with b set to 0 when year did not 

have a significant effect (i.e. there was no clear yearly trend). 

To explore implications of using different models to guide spatial conservation decisions about 

where to protect habitat for species, we also calculated, for each pair of models, the ratio between 

the sum of predictions from one method across the top 5% of cells based on predicted occupancy as 

identified by that method and across the top 5% of cells as identified by the second method of the 

pair. Here, values close to 1 would suggest similar expected conservation outcomes of targeting sites 

selected by each of the models.

Results

Model performance 

Figure 1 exemplifies the analyses and typical results for species that displayed temporal population 

trend, specifically the declining Eurasian Skylark. Spatial AUC values were highest for BRTs, which 

more accurately identified occupied habitat (top row of spatial predictions). However, temporal AUC 

(C-Index) was highest for DODMs (when fitted to 10 years of data), which accurately captured 

population declines (bottom panel, observed population trends shown in black), but not with high 

spatial accuracy. Across species, there was little difference between spatial AUCs of static SDMs 

fitted with the collDet and det2 datasets, however models fitted with collDet data had higher 

average % deviance explained (Fig. S1.2). For simplicity, we only present results from models built 

using collDet data in subsequent analyses. 
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All methods had relatively high discrimination for most species, as measured by spatial AUC 

calculated across the range using temporally and spatially independent test datasets, with mean 

AUC for all methods >0.8 regardless of the training dataset used to fit the model (Fig. 2, Fig. S1.3). 

Model performance was most variable across methods and species when the shorter training 

datasets (3 years) were used to fit models. BRTs consistently had the highest spatial AUCs, with all 

other methods having similar mean performance except for DODMs, which had lower mean AUCs 

when only 3 years of data were used. Similar patterns were observed for % deviance explained, 

although overall model performance was relatively low and more variable (Fig. 2b, Fig. S1.3b). BRTs 

ranked as the top model for 84-97% of species based on spatial AUC, and 65-94% based on % 

deviance explained (Fig. S1.4). Spatial model performance metrics were mostly consistent within 

species: species that were modelled well by one method or training dataset were typically modelled 

well by all and vice versa (Fig. S1.5).  Pairwise comparisons of predictions at the top 5% of cells 

selected by each model suggested moderate to good agreement between models, with the average 

of ratios of probability sums ranging from 0.85 - 0.98 for models using the same methods but 

different training datasets, and from 0.80 - 0.95 for models using the same training datasets but 

different methods (Table S1.2). In contrast, spatial predictive ability was much lower when looking 

only at sites that showed some occupancy change (Fig. 4; Fig. S1.6-7). Mean spatial AUC was 

between 0.64-0.68 for all methods, except BRT, again the best performing method, which achieved 

0.69-0.73. Deviance also indicated poor fit between predictions and observations at sites with 

occupancy changes, and correlations between predicted and observed changes were low. 

Tests of model ability to capture species’ temporal trends showed a different pattern, with DODMs 

and DOMs having the highest temporal AUC values when fitted with 10 years of data (Fig. 3, Fig. 

S1.8). This pattern was driven by their better ability to predict trends in species that have undergone 

population changes over this period. Consistent with this, DODMs were ranked the top model for 

the majority of species (30-49%), followed by DOMs (20-24%) and then BRTs (10-16%) (Fig. S1.9). In 

comparison to spatial AUC, temporal AUC values varied substantially across training data sets and 

particularly across different models (Fig. S1.10). A
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Drivers of differences in model performance

The results of our comparative performance analyses (Appendix S2) showed that spatial and 

temporal AUC values were most strongly influenced by species’ prevalence, followed by population 

trend and then modelling method. Prevalence generally had a positive effect on  spatial AUC, and a 

negative effect on temporal AUC. For temporal AUC, performance increased for species with more 

positive population trends. Modelling method had a stronger effect on temporal AUC performance 

compared to spatial AUC, and had a noticeable interaction with population trend, with DODM and 

DOM performance more affected by trends (as also seen in Fig. 3). 

Comparisons of model performance for model pairs that did and did not account for imperfect 

detection in the model fitting (DODMs v DOMs; SODMs v GLMMs; SODMs v BRTs) did not identify a 

consistent effect of species detectibility (Appendix S2), likely due to the overall high per-visit 

detection probabilities achieved in the Swiss survey data (minimum 0.46, median 0.77). With three 

repeat visits to a site, only three species (Eurasian Sparrowhawk, Hawfinch, and Long-tailed Bushtit) 

would have an overall cumulative detection probability < 0.9. Consistent with this, spatial AUC of 

models that accounted for imperfect detection was very similar when calculated based on the 

projected probability of occurrence, compared to the combined probabilities of occurrence and 

detection (Fig. S1.11), with a few notable exceptions for species where detection probability varied 

strongly with elevation. However, % deviance explained was higher when detection probabilities 

were accounted for, particularly in SODMs. Differences in the predicted area of occupancy (AOO) (%) 

between all model pairs that did and did not account for imperfect detection were correlated with 

detection probability (r = -0.43 – -0.51), with models that accounted for detection yielding larger 

estimates of AOO for species with lower detection probabilities. For most species, differences were 

relatively low (mean: 10-12%, median: 5-8%), however for species with lower detection 

probabilities, estimates of AOO differed by up to 85% (Eurasian Sparrowhawk, p = 0.46). Selected 

environmental predictors often differed between paired models that did and did not account for 

detection; variables included in models for the same species and using the same training dataset A
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differed for between 52-56% of species for DODMs and DOMs, and 65-81% of species for SODMs 

and GLMMs (Figs. S1.12-15). 

The strong model performance of BRTs predicting spatial patterns appeared to be at least partly 

driven by the more flexible approach to variable selection: when we re-fit BRTs using the same 

settings, but restricting models to only the four selected environmental variables used to fit DODMs 

for each species and training dataset combination, model performance decreased (Fig. S16), 

although it remained slightly higher on average than that for the other methods.

An analysis of novel environmental space across the study region using Multivariate Environmental 

Similarity Surfaces (MESS; Elith et al. 2010) highlighted the potential for extrapolation, particularly 

when models were fitted to three years of data (Fig. S12). However, the variables showing novel 

values (bio4 and bio15) were rarely selected as covariates (Figs. S13-15).

Discussion

Species distribution models are used to inform a wide range of conservation and management 

decisions, including identifying potential and high-quality habitat for threatened species, and 

inferring future population trends based on changes in potential habitat (Guisan et al., 2013; Hof et 

al., 2018). As one of the first studies to apply dynamic occupancy detection models (MacKenzie et 

al., 2003) to predict the distributions of a large number of species, our study highlights 

methodological challenges and opportunities to improve the use of these methods for forecasting 

range dynamics. Focusing on model predictive ability over relatively short time frames that are 

relevant for many management decisions and using real data for a suite of bird species, we found 

that models that explicitly account for colonisation-extinction dynamics were better able to capture 

population trends when given enough calibration data but yet had lower spatial predictive accuracy 

than the most flexible static SDMs. Critically, none of the considered methods performed well at 

predicting the occupancy of sites that experienced change. These results underline the importance 

of considering what aspects of model performance matter most when applying distribution A
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modelling to specific conservation and management problems and ensuring that model evaluation 

targets these aspects (Rapacciuolo, 2019). 

Across species, all of the models we considered showed relatively good spatial predictive 

performance across the species range, with BRTs being consistently the best at capturing species’ 

distributions across space.  These differences in spatial model performance between BRTs and other 

modelling methods seemed to be at least partly due to the different approach we took to variable 

selection and model fitting: when BRTs were fitted with the selected four environmental co-variates 

used to fit DODMs (rather than using the full suite of 14 candidate variables), model performance 

decreased (Fig. S10). These decisions reflect practical constraints: BRTs are easy to fit, whereas the 

other models are computationally heavy given the need to fit many models to find the ‘best’ one. 

Even with our reduced predictor set, fitting all candidate DODMs for a single species and training 

dataset took between 2-14 days, compared to running BRTs for all species and training datasets, 

which ran in under five hours (see Appendix S3). Other studies fitting DODMs have instead 

considered parameters sequentially (Clement et al., 2016), adopted Bayesian approaches that avoid 

overfitting by using regularization or penalization (Rushing et al., 2019) or combined the structural 

rigor of hierarchical modeling with the algorithmic flexibility of machine learning methods (Joseph, 

2020). Here, we deliberately chose to focus on a commonly adopted and readily available 

implementation of the maximum likelihood approach to test model pipelines that could be (more) 

readily applied by practioners. Yet, Bayesian methods show great promise for improving variable 

selection and model fitting in cases where the drivers and nature of relationships are poorly 

understood (Hooten & Hobbs, 2015).  Similarly, non-parametric model implementations that are 

capable of capturing more complex non-linear responses could improve spatial accuracy of 

predictions (Rushing et al., 2019). The ability of DODMs to generate accurate spatial predictions is 

often not assessed using independent data (Briscoe et al., 2019), perhaps because data regarding 

the true presence or absence of a species are rarely available. In addition, studies employing these 

methods to date have often focused on quantifying current or past ranges or trends, using indirect 

co-variates such as elevation, year or site, which are not suitable for forecasting (Guisan & A
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Zimmermann, 2000). Our study highlights the need to focus on improving the spatial predictive 

performance of DODMs and how this can be critical to expanding their utility. A key result in our 

study was that none of the modelling methods considered performed well at sites that showed 

changes in occupancy. Better model selection could improve the ability of DODMs to predict where 

change is likely to occur, and therefore their value to inform spatial conservation decisions.

Metrics of temporal pattern  prediction ability were generally poor. For species with stable 

population trends, this may simply reflect the fact that differences between years are just “noise” 

over a constant baseline, resulting in temporal AUC values close to 0.5. However, static methods 

also struggled with inferring temporal trends of species that showed either increases or declines 

over time. Dynamic occupancy models (both DODMs and DOMs) were much better than other 

methods in this context, when fitted with longer time series of data. This is an important result, 

particularly for users of standard SDMs who hope to model species trends. This result is likely driven 

by the fact that dynamic occupancy models directly model changes in occupancy via colonization 

and extinction and explicitly account for the status of the site in the previous timestep. The model 

structure is designed to describe how sites become occupied or unoccupied by species, and the 

model does not require the equilibrium assumption needed for static approaches, and therefore it is 

better suited to predict the fate of sites into the future (Yackulic et al., 2015; Clement et al., 2016). 

Output from static SDMs often indicated either no trend or rapid fluctuations between years, and 

were not, on average, useful for inferring population changes (mean temporal AUC for static models 

was 0.49). Static SDMs rely on the modelled relationship between the probability of occurrence and 

environmental covariates. Thus, changes in occupancy will only be predicted if these are driven by 

(or correlate with) changes in the environment, and because yearly predictions are completely 

independent, they can fluctuate widely. In contrast, in our dynamic occupancy models, the 

occupancy status of a site is dependent on its status in the previous timestep, often resulting in 

smoother predicted year-to-year changes. In addition, changes in occupancy occur via colonisation 

or extinction, and although these can vary through space and time as a function of environmental 

covariates, the environment does not need to change for changes in occupancy to occur. Perhaps A
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surprisingly, colonisation and extinction rates were frequently modelled as a function of static land-

use classes (Figs. S1.13-15). 

While there are extensions to dynamic occupancy detection models that attempt to more directly 

capture population dynamics (MacKenzie et al., 2009, 2012), here we inferred temporal population 

trends using the change in the expected area of occupancy (AOO), as estimated by summing the 

occupancy probabilities in each timestep. This is consistent with approaches used to inform 

assessments of extinction risk (IUCN Standards & Petitions Subcommittee 2017) or impacts of 

environmental change (Clement et al., 2016; Hof et al., 2018). Several studies have highlighted that 

AOO may not always be a useful predictor of population trends, and even if there is a relationship, it 

may not be linear (Fordham et al., 2012). However, even when range changes were evident in our 

dataset (e.g. Common Kestrel, Red Kite), static SDMs often predicted no overall trend, which is a 

concern if these methods are being used to inform conservation risk assessments. Two important 

caveats are that: (i) we did not account for dispersal constraints or minimum habitat size when 

calculating AOO; and (ii) we focused on using yearly weather data to capture near-term trends (14 

years in total), which differs from many correlative SDM studies that focus on predicting species 

responses over longer timespans as a function of long-term climate (Porfirio et al., 2014; Gardner et 

al., 2019; although see for example Runge et al., 2015). This shorter timeframe is relevant to many 

management decisions, for example, population declines are assessed over 3 generations under the 

IUCN guidelines, which is < 10 years for many bird species (Bird et al., 2020). However, the superior 

performance of DODMs for capturing population trends that we observed may not hold when 

predicting over longer timeframes and larger, directional changes if transitions in the training data 

do not adequately capture drivers of future changes and allow them to be modelled via extinction 

and colonisation. In DODMs and DOMs the transition from an occupied to an unoccupied site is 

dictated by the extinction probability, which is not informed by information from sites where the 

species never occurs. 
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In addition to generating predictions, distribution models are also commonly used for explanation 

(Araújo et al., 2019). One advantage of dynamic occupancy models relative to static models is that 

they can capture information about what drives both colonisation and extinction processes, helping 

us better understand and test the mechanisms that underlie range dynamics (Kalle et al., 2018). For 

example, we found that across the range of dynamic models fitted, extinction probability for 

Eurasian Skylarks (a declining species with strong avoidance of forests) was consistently higher in 

regions with more forest or wooded areas, and colonisation was very low. Such insight can be useful 

for guiding management (Hamer et al., 2016). 

Accounting for imperfect detection did not consistenly improve performance in our dataset, where 

most species had high detectability. It did, however, affect estimates of the area of occupancy for 

the less detectable species, resulting in a predicted area of occupancy ~1.8 times larger for the 

species with the lowest detection probability (Eurasian Sparrowhawk, p = 0.46). The high levels of 

detection in our study are rare: a review by Kellner & Swihart (2014) showed that 70% of studies 

accounting for species detectability reported per-survey estimates of detection lower than 0.5. In 

general, accounting for imperfect detection will be particularly important if accurate estimates of 

AOO are needed; if detection (e.g. due to survey effort) varies through time and model outputs are 

being used to assess changes; or if detection varies with environmental co-variates and spatial 

outputs are being used to identify key habitat (Guillera-Arroita, 2017; Guillera-Arroita et al., 2015). 

Data limitations are often cited as a barrier to the use of more process-explicit models of range 

dynamics (Urban et al., 2016), and our results also highlight this issue for more complex dynamic 

occupancy detection models. We found surprisingly little effect of the temporal extent of training 

data on model performance across most model classes, with performance more strongly driven by 

species attributes (prevalence, population trends) and modelling method. However, there was a 

trade-off between model complexity and the number of years of training data used to fit models, 

with the performance of the most complex models (DODMs) increasing when they were fitted with 

more years of data. This was most evident for their ability to capture temporal trends and suggests A
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the utility of DODMs for better capturing species temporal trends will depend on the availability of 

relatively large datasets, with observations over multiple years (>5 years). This result however is 

linked to this relatively stable system and timeframe. Potentially, systems undergoing faster change 

could be characterized with data collected over shorter time periods. While our dataset included 

repeat visits to all sites every year, it is worth noting that this is not necessarily required, and that 

imperfect detection can be modelled when data for modelling the observation process are collected 

at a subset of sites and/or years (Guillera-Arroita 2017) or even with single visits when time to the 

first detection is recorded in each (Garrard et al., 2008).   

Recent calls for wider use of process-explicit models to forecasts species’ range shifts and population 

trends rely heavily on the assumption that models that explicitly capture the mechanisms known to 

underpin responses to environmental change, will provide more accurate forecasts (Urban et al., 

2016; Zurell, 2017). Model evaluation studies, such as this one, that test which methods actually 

provide reliable forecasts under which circumstances are urgently needed. Our findings that DODMs 

were best at inferring past and future temporal trends in population size, while static SDMs (BRTs) 

were more adept at capturing general spatial distribution patterns, reinforces the notion that 

different modelling approaches often have different strengths, and so the selection of a modelling 

method and implementation should be informed by the intended application (Briscoe et al., 2019; 

Guisan et al., 2013). Our results showed that fitting DODMs is feasible for many species – though 

more computationally challenging than static approaches. It also highlighted that their ability to 

provide improved predictions of population trends depends on the level of population change and 

data availability, and that there is scope and a need for improving their spatial predictive 

performance. Overall, our study shows the potential utility of DODMs for better forecasting how 

environmental change will impact on species, while also highlighting areas of research investment – 

variable selection, model fitting and testing spatial predictive performance using independent data – 

that are likely to yield further improvements and make these methods practical in a wider range of 

situations. 
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Tables

Table 1: Modelling methods used. Methods differed in model structure, including whether they 

explicitly model detection and dynamics. For static occupancy models (i.e. correlative SDMs), we 

tested two commonly applied methods – Generalized Linear Mixed Models (GLMMs) and Boosted 

Regression Trees (BRTs). All models were fitted in R. Quotes are used for names of R packages and 

italics for functions within these packages. collDet = data aggregated across all survey visits, Det2 = 

data from second survey only. See Appendix 3 for additional details on model fitting. 

Model name Detection Dynamics Notes on model fitting

Dynamic occupancy 

detection (DODM)

Y Y Fit using colext in 

‘unmarked’

Dynamic occupancy 

(DOM)

N Y Fit using colext in 

‘unmarked’ using 

collDet data

Static occupancy 

detection (SOM)

Y N Fit using occu in 

‘unmarked’ 

Static occupancy – 

GLMMs 

N N Fit using glmer in ‘lme4’ 

using collDet & Det2 

data

Static occupancy – 

BRTs

N N Fit using gbm.step in 

‘dismo’ using collDet & 

Det2 data
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Figure legends

Figure 1. Example of approach and outputs used to evaluate predictive performance of model 

classes. Model evaluation metrics, spatial predictions and temporal trends are shown for the 

Eurasian Skylark (for simplicity only models fitted with 10 years training data are shown). Spatial AUC 

values were calculated using spatial predictions (top right panel) at survey sites in years subsequent 

to model fitting. Temporal AUC (C-Index) was calculated by summing spatial predictions in each year 

to get the change in predicted AOO (relative to year 1), and comparing this with data on relative 

population change (bottom right panel; black line = observed data). Black circles on the maps 

indicate sites where the species was observed in that year, and red circles indicate sites where the 

species was observed in 2000, but not in 2013. For the Eurasian Skylark, spatial AUC was highest for 

BRTs, which more accurately identified occupied habitat (top row of spatial predictions). However, 

temporal AUC (C-Index) was highest for DODMs, which captured overall pattern of population 

decline (bottom panel), but with lower spatial accuracy. Static SDMs were fitted with the collDet 

dataset. The same scale is used in the maps for both displayed methods. Image: Markus Jenny.   

Figure 2. Box plots of spatial AUC and percent deviance explained across different types of 

distribution models fitted for 69 bird species in Switzerland and evaluated by projecting models 

beyond the training period (indicated in the top of each panel) and testing against data collected 

yearly up to 2013. Horizontal lines indicate median, with notches showing rough 95% confidence 

intervals.

Figure 3. Temporal AUC of different types of distribution models fitted for 69 Swiss bird species 

using different training datasets (3, 5 or 10 years) and evaluated by testing model predictions of 

summed probability of occupancy in each year against yearly values of the Swiss Bird Index for that 

species. Panels show results for species classed based on population trends (2000-2013), n = the 

number of species in each group. Evaluated models: dynamic occupancy detection models (DODM), A
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dynamic occupancy models (DOM), static occupancy detection models(SODM), generalized linear 

mixed models (GLMM) and boosted regression trees (BRT).  

Figure 4. Box plots of spatial AUC, percent deviance explained and correlations between the 

predicted and observed change in occupancy from year 1 to year 14, across different types of 

distribution models fitted for 69 bird species in Switzerland using 10 years of data, and evaluated by 

projecting models beyond the training period (indicated in the top of each panel) and testing against 

data collected yearly up to 2013, focusing only on cells with some observed change. Horizontal lines 

indicate median, with notches showing rough 95% confidence intervals. 
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