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Abstract    

 Ratios of parameter estimates are often used in econometric applications.  However, 

constructing confidence intervals for these ratios can cause difficulties since the ratio of 

asymptotically normally distributed random variables are Cauchy distributed thus they have no 

finite moments.  

This paper presents a method for the estimation of confidence intervals based on the Fieller 

approach that has been shown to be preferable to the usual Delta method.  Using example 

applications in Stata and R, we demonstrate that a few extra steps in the examination of the estimate 

of the ratio can provide a confidence interval with superior coverage.  
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1. Introduction 

 Many econometric applications draw inferences from a parameter of interest that is defined 

as the ratio of regression coefficients.  However, the properties of the ratio of estimates can be 

problematic.  This paper examines eight examples of econometric models where inferences for 

ratios are used.  These examples include; the interpretation of a dummy variable in terms of changes 

in a continuous regressor, the location of a turning point in a quadratic specification where the 

marginal impact of a regressor changes sign, the interpretation of the marginal effect of one 

regressor when interacted with another, the estimation of the long-run effect in a dynamic model, 

the determination of the “Taylor Rule” for dynamic macro models, the determination of the non-

accelerating inflation rate of unemployment (NAIRU), the willingness to pay, and the structural 

parameter in an exactly identified system of equations as estimated by the two-stage least squares 

method.  We present analysis of applications of each of these cases along with the corresponding 

Stata code to obtain these results. 

In this paper, we emphasise the use of confidence intervals (CIs) instead of the use of p-

values.  Because confidence intervals are expressed in the units of the parameter of interest instead 

of as a probabilistic abstraction, we concentrate on the nature of these intervals.  The traditional 

approach for constructing CIs is based on the Delta method where a first order Taylor-series 

expansion is used to approximate a linear relationship between the estimated parameters and the 

ratio.  This method is the standard approach to the estimation of CIs and tests of hypothesis for non-

linear functions of regression parameter estimates and is available in most econometric/statistics 

software.   

An alternative method for the construction of CIs for ratios is Fieller’s 1954 proposal.  This 

approach has been shown to be superior to the application of the Delta method in several 

applications (e.g. Hirschberg and Lye 2010c).  This superiority has been found in the coverage of 

the resulting tests where the estimated 100(1 )%  interval from the Fieller method more closely 

coincides with the theoretical interval than the alternate Delta interval.1  In addition, Fieller intervals 

are not forced to be symmetric as are the Delta intervals.  However, in some cases, the Fieller 

approach may not result in a finite CI for some values of  .  In such cases the resulting CI may also 

be the complement of a finite interval or the whole real line.  The advantage to the graphical 

approach presented here is that it can provide an indication of when this may be the case and can 

provide partial information that can be used to construct open ended intervals.  This is shown in 

some of the examples below. 
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Another attraction to the Fieller method is the ease of computation.  We demonstrate that this 

method can be computed using a direct computational method similar to the Delta and does not 

require the use of simulations and sampling strategies as would be needed when employing a 

Bootstrap or Bayesian method.   

In the next section, we outline the aspects of the theory involved for the Fieller as it can be 

applied to the ratios of regression coefficients and discuss the syntax of Stata commands we employ 

to construct the CIs.  In Section 3 we provide eight examples of econometric applications where the 

result of interest is a ratio of parameters or the ratio of linear combinations of parameters as 

estimated from standard regressions, probit models, systems of equations, and non-linear models. 

2. Confidence Intervals for a ratio of regression coefficients 

2.1 Ratios of Regression Parameters 

Consider the general linear model, 

  Y X B e          (2.1.1) 

where Y  is an  1T   vector of observations on the dependent variable,  X B  is a  1T 

function of an  T k  matrix X  of regressors and a  1k   vector B  of unknown parameters, and 

e  is an  1T   vector of disturbances with mean 0 and  T T covariance matrix  .  Suppose 

interest lies in the ratio of regression coefficients defined by, 

H h

L l

 
  

 

B

B
,       (2.1.2) 

where H  and L  are  1k  vectors of known constants thus H B  and LB  are linear combinations 

of the parameters and k and l are constants.  The usual estimate of the ratio   in (2.1.2) is, 

ˆˆˆ
ˆ ˆ

H h

L l

 
  

 

B

B
,       (2.1.3) 

where B̂  is the  1k   vector of the estimates of B in (2.1.1). 

The models we consider here assume the estimates of B  are normally distributed with a 

covariance matrix that we can approximate.  In general, regression, maximum likelihood estimation 

and non-linear least squares all result in estimates of the parameters under these assumptions.2 
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2.2  The Delta Method for CIs 

 The estimated variance of ̂  based on the Delta method is defined for the ratio of the 

parameter estimates.  We assume that the parameter estimates are bivariate normally distributed:3 

2

1 12

2
12 2

ˆ
~

ˆ
N

    
     

    
    
        

   


  
        (2.2.1) 

and ˆ ˆˆ     .   

The estimate of the variance of the ratio of normally distributed random variables based on 

the Delta method is defined as: (see example 5.5.27 in Casella and Berger 2002) 

       
2

2 2

2

1 2

2 2 2

1 2 1

1

2

2
ˆ ˆ ˆˆ ˆ ˆ/ / ² / ² /ˆvar( ) 2

ˆ ˆ ˆ2

    
 

   

       

    
 

     (2.2.2) 

When using estimates of the variance covariance matrix, the Delta method 100(1- )% CI for ̂  is: 

   2

1 2 2 2

1 2 12
Delta

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆCI   2t
           ,     (2.2.3) 

where 
2

t  is the value from the t distribution with T-k degrees of freedom.   

2.3  The Fieller Method for CIs 

The Fieller method (Fieller 1932, 1954, Rao 1973, pp 241-242) provides a general procedure 

for constructing confidence limits for statistics defined as ratios.  A 100(1  )% Fieller CI for   

can be found by inverting the t-test associated with the null hypothesis based on a linear 

combination of the parameters defined as: 0 : 0jH    for different possible values of   as 

designated by 
j .  Based on our assumption that the parameter estimates are normally distributed 

we find that the linear combination of the parameter estimates  ˆˆ ,   for any j  is also normally 

distributed: 

    2 2 2 2

1 12 2
ˆˆ ~ 0, 2j N             (2.3.1) 

Or we can rewrite this expression in terms of a standard normal distribution as: 

 
 2 2 2 2

1 12 2

ˆˆ
~ (0,1)

2

j
N

  

      
      (2.3.2) 
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By squaring both sides and using the estimated variance of the linear combination we can specify 

(2.3.2) in terms of the square of a t-distribution for a 100(1  )% CI as: 

 
 

2

2

2 2 2 2 2
1 12 2

ˆˆ

ˆ ˆˆ ˆˆ ˆ ˆ2

j
t

  


      
,       (2.3.3) 

The values of   that would satisfy (2.3.3) define the bounds of the confidence interval - in this way 

we have “inverted” the test statistic to define the confidence interval.   

By moving the denominator in (2.3.3) to the right hand side and combining terms this 

expression can be written as a quadratic equation in the limiting values of   designated as   that 

solve the quadratic equation: 
2 0a b c    , where 2

2

2 2ˆ ˆa t   2 , 12
2

2 ˆ ˆˆ2b t    
 

 and 

1
2

2 2 2ˆ ˆc t    .  The two roots of the quadratic equation,  

   
2

Fieller

4ˆCI ,
2 2

lower upper

b b ac

a a

 
      ,     (2.3.4) 

define the Fieller 100(1  )% CI for ̂ .  In general, ˆ
2

b

a


   thus unlike the Delta CI, the Fieller CI 

will not necessarily be symmetric about the estimate of the ratio.  Two finite bounds can be derived 

if the hypothesis 0H : 0  can be rejected when   is the level of significance (Buonaccorsi 1979).  

In addition to the finite interval case, the Fieller CI may be the complement of a finite interval when 

(b2 – 4ac > 0, a < 0) or of the whole real line when b2 – 4ac < 0, a < 0.  These conditions are 

discussed in Scheffé (1970) and Zerbe (1982).   

Hirschberg and Lye (2010a) present a line plot representation of the 100(1  )% Fieller CI 

for  .  The linear combination  ˆˆ
j    for varying values of 

j  is plotted along with its 

corresponding 100(1  )% confidence bounds defined as: 

   2 2 2 2 2

1 12 2
2

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ  2j t          ,     (2.3.5) 

The estimate ̂  is found by determining the values of j  where  ˆˆ 0.j      Similarly, the 

bounds of the 100(1  )%  
Fieller

ˆCI   can be found by determining for what values of j  the two 

functions defined in (2.3.5) are equal to zero. 
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2.4 Stata Commands4 

As an example, suppose the regression model is, 

1 2 2 3 3 = +  +  + y x x           (2.4.1) 

and the ratio of interest is defined as, 


 


          (2.4.2) 

where 1 22 ,h      h is a constant in this case = 0.5 and 31   .   

We first estimate the model using an appropriate estimation technique and standard errors.  

For example, suppose we estimate the model using OLS and store the results for later use with the 

name “reg”. 

regress y x2 x3 
estimates store reg  

To find the limits of the delta 95% CI we use the Stata command nlcom.  Within this command we 

need to define the numerator ̂  , the denominator ̂ and the ratio ˆ ˆˆ    , where in this case we 

define the formula for each in Stata by: ̂   (_b[_cons] + 2*_b[x2] + .5) ) and ̂  (1 - _b[x3]).5 The Stata 

command ncolm can be used to define ˆ ˆˆ,   and     with the command syntax:  

ncolm (rho: (_b[_cons] + 2*_b[x2] + .5) ) (phi: (1 - _b[x3])) ///  

(theta: _b[_cons] + 2*_b[x2] + .5) / (1 - _b[x3])), post 

The sequence of these definitions is such that we can retrieve the variance and covariance matrix of 

the numerator and denominator as the first two rows and columns of the covariance matrix stored 

when using ncolm with the post option (here defined as the matrix V).  To find the limits of the 

Fieller 95% CI by solving the two roots of the quadratic defined in (2.3.4) we first define ̂  rho and 

̂  phi and their variances v11, v22 and their covariance v12 by the following: 

matrix V = e(V) 
scalar v12 = V[1,2] 
scalar v11 = V[1,1] 
scalar v22 = V[2,2] 
scalar rho = _b[rho] 
scalar phi = _b[phi] 

Where the variance of ̂  = v11, the variance of ̂  = v22 and the covariance between ̂  and ̂  = 

v12 also need to be defined as scalars.   

scalar aa = (phi*phi) - (t2*t2*v22)  
scalar bb = (2*t2*t2*v12) - (2*rho*phi) 
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scalar cc = (rho*rho) - (t2*t2*v11) 
scalar rad = sqrt(bb*bb - 4*aa*cc) 
scalar lm1 = (-bb + rad ) / (2 * aa)  
scalar lm2 = (-bb - rad ) / (2 * aa) 

The roots of the quadratic are then found by first defining the parameters of the quadratic as scalars 

and then using the solution to the quadratic equations to solve for the roots as lm1 and lm2.  The 

result would be a finite CI if the quadratic has real roots (in this case if rad is not missing). 

For a graphical representation of the 100(1  )% Fieller CI for , we first recall the 

regression results with the restore option on the estimates command then we use the margins command 

to calculate  ˆˆ
j    for different values of 

j  and its corresponding 95% CIs.  In order to obtain a 

range of values for 
j we need to use one of the variables in the model (in this case x3) 

 to act as a 

proxy for 
j ,6 

estimates restore reg 
quiet margins, expression (_b[_cons] + 2 * _b[x2] + .5) ///  
- (1 - _b[x3]) * x3 ) at (x3=(-15(1)15)) level(95)  

In this case we have considered possible values for 15j    to 15j   with increments of 1.  To 

plot the calculated functions from margins we use the Stata command marginsplot, 

marginsplot, yline(0) recast(line) recastci(rline) title(Fieller CI ) 

3. Econometric Applications 

In this section, we demonstrate the use of the Fieller method in eight econometric applications 

where a function of interest is a ratio of parameters or ratio of linear combinations of parameters.  

The first example is the interpretation of a dummy variable in terms of changes in a 

continuous regressor.  This technique is related to the slope ratio assay method originally used in 

pharmacology.  The application presented here employs the border phenomenon observed when 

smoking laws in one state influenced demand for gambling in an adjacent state. 

In the second example, we demonstrate how one can determine the turning point in a 

quadratic specification where the marginal impact of a regressor changes sign.  It is frequently the 

case that non-linearity in a regression is modelled with a quadratic specification.  One aspect of this 

form of specification is that the marginal impact of the regressor is not constant and may change 

sign within the range of the data.  The application considered here is the case of the environmental 

Kuznets curve that postulates that countries with higher national incomes pollute at decreasing rates 

when they approach a turning point in the quadratic relationship between pollution and national 

income. 
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The third example examines how the marginal effects of one regressor that is interacted with a 

second regressor varies with the values of the second variable.  In this case we establish the range of 

values for the second regressor over which the marginal effects of the first variable are significantly 

greater than zero. 

The fourth example, demonstrates how the long-run marginal effects in a dynamic model can 

be viewed as a ratio.  In this example, we use aggregate energy demand that is modelled with a 

dynamic model to estimate both the short-run and long-run price elasticities.  This example also 

shows how the Stata code can be modified to account for a non-linear estimation model. 

The fifth example is another dynamic model where we investigate the “Taylor Rule” for 

dynamic macro models.  In this case the specification is more complex than in the fourth example 

and demonstrates how the CI for the long-run effect in a model with multiple lags can be estimated. 

Our sixth example is the determination of the non-accelerating inflation rate of unemployment 

(or NAIRU).  In this example a Phillips curve relationship is estimated where the NAIRU is found 

as a ratio of parameter estimates.  

In the seventh application, we consider the measure of the willingness-to-pay model that is 

also related to the 50% dose model used in pharmacology.  Here a binomial dependent variable is 

modelled as a function of a continuous regressor.  The ratio of interest is the value of the continuous 

regressor that results in a predicted probability of .5.  In the willingness-to-pay literature this value 

is the minimum someone is willing to pay when the dependent variable is the purchase and price is 

the continuous variable. 

 In the eighth example, we demonstrate how the structural parameter in an exactly identified 

system of equations can be estimated via the indirect least squares method which is equivalent to 

the two-stage least squares approach.  This method employs the ratio of parameters for the 

structural parameter estimation. 

3.1 Parallel-line assay: A compensation interpretation of a dummy variable. 

Finney (1978) considers the slope-ratio assay in which the potency of a test drug in 

comparison to a standard drug is required.  In the assay, amounts of a standard drug are used on 

some patients while other amounts of a test drug are used on other patients.  The assumed model is, 

0i i i iy x d      ,       (3.1.1) 

where y is the response, x is the dosage of the drug, d is an indicator of 0 for standard drug and 1 for 

test drug and  .    The parameter of interest is   which is the ratio of parameters 


 


.  This 
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can be interpreted as the amount of the standard drug required to give an equivalent response to a 

unit dose of the test drug.   

This method can be generalized to any case where we fit a regression with continuous 

regressors as well as dummy variables.  This technique can provide an interpretation of the value of 

the coefficient on the dummy variable in terms of the change in the value of a continuous variable.  

Thus, the usual interpretation of the dummy variable in the units of the dependent variable can be 

changed to be in the units of one of the independent variables. 

Figure 3.1.1 The relationship between the estimated dummy variable parameter ̂  and the 

translated version ̂  in the simple case.  

1x
2x

x

y

̂

2ŷ

̂

1ŷ

0
ˆ ˆ ˆˆ

i i iy x d    

̂

0̂

ˆˆ
ˆ


 



̂

1id 

0id 

 

For example, if we fit a model with the specification as in (3.1.1) we would have a predicted 

relationship as shown in Figure 3.1.1.  Where the dummy variable d shifts the linear relationship 

between y and x by an amount ̂  for any value of x and the slope of the parallel lines is ̂ .  Where 

we have assumed that all parameters are estimated as positive values.  This means that we can 

interpret ̂  as the increased amount of x needed to compensate for when d = 0.  Thus, from Figure 

3.1.1 if the level of x is x1 and d = 1 then the predicted value of y is given as 2ŷ .  However, if the 

dummy is equal to zero then the predicted value of y is 1ŷ  where 1 2
ˆˆ ˆy y   and the usual 

interpretation of ̂  is in the units of y.  Alternatively, we can convert the value of ̂ in terms of the 

equivalent change in x to have the same effect as the case when the dummy variable is equal to one.  

This amount is determined by  
ˆ

ˆ
ˆ 


   which interprets the impact of the dummy in the 
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corresponding value of the regressor.  However, this translation of units requires the ratio of the 

estimated values of  and    which are stochastic terms and thus complicates the interpretation of ̂  

and the construction of its corresponding CI. 

In this example, we apply this approach to determine the impact of the proximity to the state 

border on a smoking ban in gaming areas of licensed premises that was instituted on 1st September 

2002 in Victoria, Australia.  The objective of this analysis is to determine the increase in the 

number of EGMs that venues in communities on the border with New South Wales would need to 

compensate them for the loss in revenue they incurred due to the institution of smoking bans in 

Victoria and not in New South Wales.  Hirschberg and Lye (2010d) investigate the nature of the 

pattern of falls in local electronic gaming machine (EGM) revenue that occurred due to this ban.  

The ban had a differential impact on different regions based on their proximity to the border with 

New South Wales, where there were no smoking bans in effect at the time.  Victoria is subdivided 

into local government areas (LGAs).  Using LGA-level annual data, Hirschberg and Lye (2010d) 

regress the %change in EGM Expenditure 2002-2003 in $2002  % EGMExpend  on the 

percentage change in EGM numbers ( % EGM ), a measure of social-economic status of the LGA 

(IRSED) and a dummy variable (nborder) that takes the value 1 if the LGA does not border the state 

of New South Wales.  The specification is given in (3.1.2). 

0 1% %i i i iIRSED EGMEGM nborderExpend            (3.1.2) 

Table 3.1.1.   Impact of Local Smoking Bans regression results (with robust standard 

errors), where:

,  % E , and % , IRSED GM nEGMEx bpend order    cegm nbordefall irsed r . 

 

The regression results are reported in Table 3.1.1.  The parameter of interest is   which is the 

ratio of parameters on the dummy for no border (nborder) and the percent change in the number of 

                                                                              

       _cons     18.99533   11.30684     1.68   0.099    -3.654991    41.64565

       irsed     -.035189   .0112757    -3.12   0.003    -.0577769    -.012601

        cegm     .5034429   .1880271     2.68   0.010     .1267793    .8801065

     nborder     4.445393   1.836437     2.42   0.019      .766568    8.124218

                                                                              

        fall        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                             Robust

                                                                              

                                                Root MSE          =     3.7914

                                                R-squared         =     0.2325

                                                Prob > F          =     0.0029

                                                F(3, 56)          =       5.25

Linear regression                               Number of obs     =         60
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EGMs (cegm) is reported in Table 3.1.2 as 8.830.  This implies that the number of EGMs within 

the LGA would need to increase by this percentage to compensate for the location influence of the 

smoking bans, when also considering the social-economic status of the LGA.  The mean of 

% EGM  is -0.208 and it ranges from a minimum of -6.75 and a maximum of 4.69.   

Table 3.1.2 The estimates of  ,   and  . 

 

The appropriate 95% Delta CI based on the t-distribution is [-.111 to 17.771].7  Furthermore, 

the estimated value of ̂  = 8.83 is higher than any of the % changes of EGMs for any observation 

in the data.  We obtained the 95% Fieller CI as [1.638 to 34.077] from the solution to the quadratic 

equation as specified in (2.3.4).  

The line-plot for the linear combination along with the CI as defined in (2.3.5) is given in 

Figure 3.1.2.  From the line plot we note that the upper bound is almost double the level of the Delta 

upper bound.  In addition, the upper Fieller bound of more than 34% would require a change in the 

number of EGMs to be way beyond a viable number for any year.  This implies that to compensate 

the venues on the border for the advent of a smoking ban to insure they are not disadvantaged more 

than other Victorian venues, would require an increase of on average 8.83 % more EGMs and to 

insure compensation with 95% confidence would require over a 34% increase.  An increase that is 

way beyond the maximum that was observed over the time and local communities observed up to 

then. 

                                                                              

       theta     8.829985   4.463193     1.98   0.048     .0822874    17.57768

         phi     .5034429   .1880271     2.68   0.007     .1349165    .8719693

         rho     4.445393   1.836437     2.42   0.015      .846043    8.044743

                                                                              

        fall        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

       theta:  _b[nborder] /_b[cegm]

         phi:  _b[cegm]

         rho:  _b[nborder]
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Figure 3.1.2 The linear combination ˆ̂  with the 95% CI 
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3.2 The Turning Point:  An Environmental Kuznets Curve. 

The estimation of non-linear relationships with a polynomial specification is often used in 

empirical economic research.  Adding a polynomial in a regressor to a model specification will 

allow the marginal effect of the regressor to vary with the value of the regressor.  The most 

commonly employed polynomial is the quadratic form where the relationship estimated is either a 

U-shaped or inverted U-shaped curve.  In many cases the curvature of the estimated relationship 

will not imply a sign change in the marginal effect within the range of the data.  However, when 

such a sign change does occur within the range of the regressor values, there is an indication of a 

turning point.  A common example of such a relationship is the Kuznets (1955) curve that proposes 

that the relationship between income inequality and income, can be represented by an inverted U-

shaped curve.  Whereby income inequality increases with income then reaches a maximum and then 

falls with increased income. 8 

The Environmental Kuznets Curve (EKC) hypothesizes an inverted U-shaped relationship 

between per capita income and pollution.  In this case, it is hypothesized that pollution increases 

with economic growth up to a point where it will start to diminish when an economy reaches a 

specific income.  We use data from Harbaugh et al. (2002) that contains measures of ambient sulfur 
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dioxide (SO2) concentrations as an indicator of pollution in 102 cities located in 45 countries 

between 1971 and 1992 to estimate an EKC.  The specification is, 

  2

1 2log 2 it it it i itit
SO G G      X λ     (3.2.1) 

where 2itSO is the mean annual sulfur dioxide measured by each monitor, itG is per capita gross 

domestic product (in 1,000 $) at time t for the country in which monitoring site i is located, 
itX  are 

country and site-specific covariates and year dummy variables and i  is a random site-specific 

effect estimated via random effects and clustered standard errors by site.  The turning point is given 

by: 

1

22


  

 
        (3.2.2) 

Table 3.2.1  Environmental Kuznets Curve regression estimate where: 

 log 2 ,SOlnmean  2 , ,  ,  and G G t  XGDP c.GDP#c.GDP DENSNAT,TRADE,DEMO = IYEAR= . 

                                                                              

         rho     .80640585    (fraction  of  variance  due  to  u_i)

     sigma_e     .37484179

     sigma_u     .76503045

                                                                              

       _cons      3.950391    .1790951     22.06    0.000      3.599371     4.301411

        DEMO      -.059991    .0098674     -6.08    0.000     -.0793307    -.0406514

       TRADE     -.0118193    .0018923     -6.25    0.000     -.0155282    -.0081105

     DENSNAT      1.849771     .213952      8.65    0.000      1.430433     2.269109

              

       1992      -.9241317    .1287244     -7.18    0.000     -1.176427    -.6718365

       973      -.2216577    .0749604     -2.96    0.003     -.3685774    -.0747381

       1972       .1363376    .0848848      1.61    0.108     -.0300336     .3027087

       IYEAR   

              

 c.GDP#c.GDP     -.0038141    .0016201     -2.35    0.019     -.0069895    -.0006387

              

         GDP      .0976685    .0355064      2.75    0.006      .0280772     .1672598

                                                                              

      lnMEAN         Coef.    Std.  Err.       z     P>|z|      [95%  Conf.  Interval]

                             Robust

                                                                              

                                (Std.  Err.  adjusted  for  267  clusters  in  ISITE)

corr(u_i,  X)    =  0  (assumed)                     Prob  >  chi2        =      0.0000

                                                Wald  chi2(26)      =      498.67

     overall  =  0.2557                                          max  =          21

     between  =  0.2207                                          avg  =         8.7

     within   =  0.2038                                          min  =           1

R-sq:                                            Obs  per  group:

Group  variable:  ISITE                            Number  of  groups   =         267

Random-effects  GLS  regression                    Number  of  obs      =       2,314

.          xtreg  lnMEAN  c.GDP  c.GDP#c.GDP  i.IYEAR  DENSNAT  TRADE  DEMO,  re  vce(cluster  ISITE)  

1

(Lines removed)

 

The model was estimated with random effects for each site and fixed effects by year.  The 
itX  

variables include a measure of national trade intensity (TRADE), an index of democratic government 

(DEMO), and population density (DENSNAT).  Indicator variables for each year are also included 

(i.IYEAR).  The z-statistics p values are adjusted for the number of clusters defined by site.  The Stata 
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estimation results are in Table 3.2.1.  The ratio gives the estimates of the turning point and the 

corresponding Delta method CI for the Kuznets curve as obtained by the call to nlcom as shown in 

Table 3.2.2 

 Table 3.2.2  Environmental Kuznets Curve estimates of , ,  and      

 
                                                                              

       theta     12.80351   1.748275     7.32   0.000     9.376958    16.23007

         phi     .0076283   .0032402     2.35   0.019     .0012775     .013979

         rho     .0976685   .0355064     2.75   0.006     .0280772    .1672598

                                                                              

      lnMEAN        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

       theta:  _b[GDP] /(-2*_b[c.GDP#c.GDP] )

         phi:  -2*_b[c.GDP#c.GDP]

         rho:  _b[GDP]
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Figure 3.2.1 The shape of the quadratic relationship and the Fieller interval as determined 

where the bounds of the first derivative function equals zero. 
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The 95% Delta CI based on the t-distribution for the turning point is 9.361 to 16.246.  To 

determine the shape of the quadratic relationship we can plot the curve defined by the impact of 

variations in G as 
2

1 2
ˆ ˆG G  .  Figure 3.2.1 is the plot of the implied curve and the first derivative 

function along with their corresponding 95% CI. 

The Fieller interval as calculated from the solution to the quadratic equation is given as 9.965 

to 26.691.  From Figure 3.2.1 the wide upper bound of the Fieller  as compared to the Delta upper 

bound corresponds to the flattening out of the upper bound of the 95% CI in the top graph of the 

shape.  Note that in this data the GDP per capita has a maximum of 18.095 which would mean that 

the relationship never would reach the point where the marginal effect of income becomes negative 

if we use the Fieller interval instead of the Delta interval.  This is quite apparent from the curve 

shape plot in Figure 3.2.1.  From this plot we can see that the Delta upper bound at 16.230 is at a 
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point where the curve is fairly flat while the Fieller interval would indicate that pollution would not 

be predicted to fall with higher GDP until it reached 26.691. 

3.3 Interactions: Journal subscriptions as influenced by age and price9 

Interaction terms are widely used in econometric models when the influence of two regressors 

are assumed to have a combination effect.  For example, in the model specified by (3.3.1): 

1 2 3 4 5 1 -4 =  +  +  +  +  + + k ky x w xw v v          (3.3.1)  

when both x and w are both continuous variables we define the partial influence function as the 

marginal effect of a change in x:10 

 E / ,

2 4 =  +  
y x w

x
w




         (3.3.2) 

If x is a dummy variable and w is a continuous variable, the difference in the regression equation 

when x = 1 and when x = 0 is defined as: 

 E / ,

2 4 =  +  
y x w

x
w




         (3.3.3) 

However, both the expressions in (3.3.2) and (3.3.3) introduce the difficulty of an appropriate 

choice of the other regressor at which to evaluate these margins.   

One approach is to set the value of this other regressor to a value such as the mean and then 

make the computation.  Alternatively, one can determine at what value of the other regressor do 

these definitions go to zero or change sign.  In specification (3.3.1) this would be the value of w that 

results in 
 E / ,y x w

x
c




  or 

 E / ,y x w

x
c




  where typically 0c   or some other value.  From (3.3.2) and 

(3.3.3) we would find this value as 2

4

* c
w




  and is estimated by 2

4

ˆ*

ˆ
ˆ c
w




  where ˆ

i are the OLS 

estimates of the ,i  i=2,4.  The question of interest is whether the value of ˆ *w  would ever be close 

to w* or not.  We propose that this may be investigated via the use of the partial influence function 

that maps how 
   E / , E / ,

 or 
y x w y x w

x x

 

 
 vary with values of w. 

For an example of the application of the partial influence function we use an analysis from 

Stock and Watson (2003, pg.  227) in which they estimate the relationship between the number of 

subscriptions to a journal at US libraries (Y) and its library subscriptions price.  The data are for the 

year 2000 and cover 180 economics journals.  Price is measured in prices per citation which is used 

as a proxy variable for dollars per idea.  Other explanatory variables include the age of journal 

(Age) and the number of characters printed per year in the journal (Char) as a measure of the 
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content of the journal.  Here we interact the price variable with age to allow for the price elasticity 

to vary with the age of the journal.  The regression equation is specified as: 

 
1 2 3

4 5

Log( )    Log( )  Log( ) 

 Log( ) Log( ) Log( )  

Y Age Price

Price Age Char

     

     
   (3.3.4)  

The regression results are reported in Table 3.3.1:  

Table 3.3.1:  Estimated regression results for Library Journal Subscriptions. Where: 

 Log( ),  Log( ),  Log( ),  Log( ) Log( )Y Age Price Price Age   loclc= lage lprice lpla  and 

Log( )Charlchar . 

 

Based on these estimates, we find that the estimated price elasticity is defined as:  

2 4
ˆ ˆ+ Log( )  -0.899 + 0.141 Log( )Age Age          (3.3.5)  

(3.3.5) implies that the price elasticity of a journal will be smaller in magnitude (less negative) with 

age – in other words:  libraries are less sensitive to price changes for journals that have been around 

longer.  The ratio  0.899
0.141 defines the value of Log(Age) at which -0.899 + 0.141 Log( ) = 0.Age   

Figure 3.3.1 plots the estimated price elasticity and its corresponding confidence bound.  Since the 

actual values of Age in the data has a minimum value of 4 (Log(Age) = 0.60) and a maximum value 

of 156 (Log(Age) = 5.05) we conclude from Figure 3.3.1 that the price elasticity is significantly 

different from 0 for all the journal ages in this data set.   

It is common practice to report a summary price elasticity such as the value of the mean of all 

the price elasticities which in this case equals 0.439 .  To find the 95% Delta and Fieller intervals 

for this case define 2

4

ˆ .439ˆ .
ˆ

  
  


  We compute this value of ̂  and the corresponding 95% CI 

using the Delta method to find the bounds from 2.667 to 3.853.11  From Table 3.3.2 we find the 

                                                                              

       _cons     3.433521    .314857    10.91   0.000     2.812115    4.054926

       lchar      .229466   .1051262     2.18   0.030     .0219876    .4369445

        lage     .3735148   .0889742     4.20   0.000     .1979143    .5491153

        lpla     .1409591   .0448348     3.14   0.002     .0524725    .2294457

      lprice    -.8989097   .1615082    -5.57   0.000    -1.217664   -.5801551

                                                                              

       loclc        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total    225.990051       179  1.26251425   Root MSE        =    .68759

                                                   Adj R-squared   =    0.6255

    Residual    82.7375673       175  .472786099   R-squared       =    0.6339

       Model    143.252483         4  35.8131208   Prob > F        =    0.0000

                                                   F(4, 175)       =     75.75

      Source         SS           df       MS      Number of obs   =       180

.         reg  loclc lprice lpla lage lchar
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Delta CI bounds limits are when Age is less than 14.5 (Log(Age) = 2.67) or Age is greater than 46.8 

(Log(Age) = 3.85). 

Table 3.3.2 The Delta estimate for the ratio of rho and phi. (m_elast is the mean of the 

elasticities ( 0.439 )) 

 

Figure 3.3.1: Price Elasticity Function for the Demand for Economics Journals  

-1
-.

5
0

.5
P

ri
ce

 E
la

st
ic

it
y

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Log(Age) of journal

Mean Elasticity = -.439

2
4ˆ

ˆ
+ 

Log(Age)


 

3.26

Delta CI

Fieller CI

 

The 95% Fieller CI can be computed based on the solution to (2.3.4) to be 2.342 to 3.886 

which results in lower values for both the lower bound and upper bound.  These values can be 

found from Figure 3.3.1 where the 95% confidence interval of the price elasticity plotted as a 

function of age, cuts the line at the mean elasticity of -.439.  

                                                                              

       theta     3.259996   .2990973    10.90   0.000     2.673776    3.846216

         phi     .1409591   .0448348     3.14   0.002     .0530844    .2288337

         rho      .459526   .1615082     2.85   0.004     .1429758    .7760762

                                                                              

       loclc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

       theta:  ( ( m_elast-_b[lprice]) /_b[lpla])

         phi:  _b[lpla]

         rho:  ( m_elast-_b[lprice])



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

19 

This article is protected by copyright. All rights reserved 

3.4 The Long-run: A non-linear specification for energy demand 

Dynamic model specifications are widely employed for the analysis of time-series data.  A 

dynamic specification includes a lag or multi-period lags of the dependent variable as regressors.  

One of the consequences of this type of model is the need for the interpretation of the parameter 

estimates of other regressors in relation to the estimated coefficients on the lagged dependent 

variables.   

A simple dynamic specification with one lag is defined by: 

1t t t ty y x           (3.4.1) 

In this model ty  is the dependent variable at time t, tx  is an explanatory variable at time t and t  is 

the error at time t.12  In the long-run it is assumed that the values of y will tend to a specific value 

(designated as y ).  Thus, 1T Ty y y   when t reaches the long-run at time T.  Under the 

assumption of a stable process  that 1  , the long-run model can be written as t ty y x     

or    
1

1 t ty x


      and the long-run marginal effect of x on y  or y

x




 is defined as a ratio 

1
. 

 
     Since the estimate of   in most economic applications is positive we find that the 

marginal impact in the long-run of a change in x is usually greater in magnitude than the short-run 

marginal effect estimated by  . 

Bernard et al (2007) employ a non-linear dynamic specification in their estimate of an energy 

demand model for the commercial sector of the Québec economy using annual data from 1962 to 

2000.  Sector specific total energy demand measured in terajoules (TE) is modelled as a function of 

its own lag, real energy price (PE) real income (IN), heating degree days as a measure of heating 

demand caused by low temperatures (HDD) and an error term  .  To ensure that temperature effects 

for year t are restricted to year t, the coefficient of HDDt-1 is set to 3 .  The model is specified in 

(3.4.2).   

     

   

0 1 1 2

3 1

( )

                         

t t t t

t t t

Log TE Log TE Log PE Log IN

Log HDD Log HDD





       

      

  (3.4.2) 

where the long run price elasticity is: 1

1
.



 
    

We estimate the model and report the results in Table 3.4.1.  From these results, we find that 

the model appears to fit quite well.  The estimated parameter on the lagged dependent variable is 

.401, and the short-run price elasticity estimate is -.319.  Table 3.4.2 provides the estimates of the 
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long-run price elasticity with the corresponding CI based on the Delta method.  From this table we 

find the estimated long-run price elasticity is -.532.  This result would be in keeping with the usual 

assumption that the long-run estimates are greater in magnitude than the short-run case. 

Table 3.4.1:  Energy demand model for the commercial sector of the Québec economy as 

estimated via non-linear least squares.  Where:

     1,  ,  ( ),  ,  t t t tLog TE Log TE Log PE Log IN   logteg loglteg logep loggdp  

   1 0 1 2 3
ˆˆ ˆ ˆ ˆ,  ,  ,  ,  ,  ,  and t tLog HDD Log HDD            loghdd loglhdd b0 b1 b2 b3 b4 . 

 

 

Table 3.4.2  The Delta CI for the long-run price elasticity 

 

The Fieller interval can be determined from Figure 3.4.1 or from the solution to the quadratic 

equation as -.681 to -.360 – both would indicate that the lower bound is lower but the upper bound 

is higher than the Delta result.13  However, since the value of ̂  has a very large t-statistic of -6.20 

and the correlation between the numerator and denominator is -.802 (large and the same sign as the 

long-run elasticity) it is not surprising that the two methods agree on the CI so closely.14 

(obs = 38)

>         {b4}*(loghdd - {b1}*loglhdd)), variables(loglteg logep loggdp loghdd loglhdd)

.         nl (logteg = {b0} + {b1}*loglteg + {b2}*logep + {b3}*loggdp +  /// 

  Parameter b0 taken as constant term in model & ANOVA table

                                                                              

         /b4     .4603591   .1698961     2.71   0.011      .114703    .8060152

         /b3     .5463033   .1223594     4.46   0.000     .2973612    .7952454

         /b2    -.3187478    .076197    -4.18   0.000    -.4737719   -.1637238

         /b1     .4006196   .0966556     4.14   0.000     .2039723    .5972669

         /b0      1.83286    .411209     4.46   0.000     .9962492    2.669471

                                                                              

      logteg        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

       Total      2.01487         37  .054455947    Res. dev.     =  -117.8863

                                                    Root MSE      =   .0550488

    Residual    .10000236         33  .003030374    Adj R-squared =     0.9444

       Model    1.9148677          4   .47871692    R-squared     =     0.9504

                                                    Number of obs =         38

      Source        SS            df       MS

                                                                              

       theta    -.5317955   .0775872    -6.85   0.000    -.6838636   -.3797275

         phi     .5993804   .0966556     6.20   0.000     .4099389    .7888219

         rho    -.3187478    .076197    -4.18   0.000    -.4680913   -.1694044

                                                                              

      logteg        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

       theta:  /b2 /(1 - /b1)

         phi:  (1 - /b1)

         rho:  /b2
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Figure 3.4.1 The Graphic representation of the Fieller CI 
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3.5 A Multiple period lag model: Taylor Rule Coefficients 

Another application of a long run effect is the estimation of Taylor Rules (see Taylor (1993)) 

with interest rate smoothing and forward looking data.  Coibion and Gorodnichenko (2011) estimate 

a dynamic specification with one and two periods lagged dependent variables.  The logic for 

determining the long-run impact of the other regressors is the same as in the case of a one-period 

lag dynamic specification except in this case we have need to consider the sum of the parameters on 

two lagged dependent variables.  The specification is of the form, 

1 1 2 2 1 2 3t t t t t j t t j x t j tr r r E E gy E x               (3.5.1) 

where tr  is the nominal interest rate in quarter t, t jgy   is output growth predicted j quarters in the 

future from quarter t, t j is inflation predicted j quarters in the future from quarter t, and t jx   is the 

output gap predicted j quarters in the future from quarter t.  The long-run parameter of interest is 

defined as: 1

1 21



  
   .  The interpretation of this parameter is the long run response of interest 

rates to a permanent 1-percentage point increase in inflation.  The model is estimated using real-

time data using the Greenbook forecasts from the Philadelphia Federal Reserve Bank of future 

macroeconomic variables.15  In Table 3.5.1 we report the results of their baseline model for the 
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1983-2002 period where the standard errors are estimated using a Newey-West error specification 

with 5 lags.   

Table 3.5.1 Estimates of the Taylor Rule dynamic regression, where: 

1,  ,t tr r ffr ffr1
2 , , , and t t t j t t j x t jr E E gy E x       ffr2 pi_tp gry_tp gap_t03 . 

 

The estimates of ,  and     are listed in Table 3.5.2. 

Table 3.5.2  The estimates of of ,  and    . 

 

Using the t-distribution and the estimated standard error given in Table 3.5.2 we find that the 

95% Delta CI is 1.397 to 3.670, and  2.533̂  .  To plot the linear combination of the parameters 

that can be used to define the Fieller interval we plot  1 1 2
ˆ ˆ ˆ1      with different values of   

to find where this linear combination is equal to zero along with the 95% CI as shown below in 

Figure 3.5.1.  Note that the Fieller CI has both lower and higher limits than the corresponding Delta 

CI.  The Fieller CI is defined as: 1.265 to 4.971. 

                                                                              

       _cons    -.3927445   .1483813    -2.65   0.009    -.6859006   -.0995885

     gap_t03     .0354846   .0129752     2.73   0.007     .0098496    .0611196

      gry_tp     .1302064   .0339801     3.83   0.000     .0630721    .1973408

       pi_tp     .1513119   .0588523     2.57   0.011     .0350378    .2675861

       lffr2    -.3393612   .0814875    -4.16   0.000    -.5003556   -.1783669

       lffr1     1.279632   .0834952    15.33   0.000     1.114671    1.444593

                                                                              

         ffr        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                           Newey-West

                                                                              

                                                Prob > F          =     0.0000

maximum lag: 5                                  F(  5,       152) =    2015.17

Regression with Newey-West standard errors      Number of obs     =        158

                                                                              

       theta     2.533297   .5752197     4.40   0.000     1.405887    3.660707

         phi     .0597292   .0230663     2.59   0.010     .0145201    .1049384

         rho     .1513119   .0588523     2.57   0.010     .0359635    .2666603

                                                                              

         ffr        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

       theta:  _b[pi_tp] /(1 - _b[lffr1] - _b[lffr2])

         phi:  (1 - _b[lffr1] - _b[lffr2])

         rho:  _b[pi_tp]
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Figure 3.5.1 The Fieller and Delta CIs for the long-run  
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3.6 The Non-Accelerating Inflation Rate of Unemployment (NAIRU) 16 

The Phillips (1958) Curve is the proposed relationship between inflation and unemployment.  

The non-accelerating inflation rate of unemployment (NAIRU see Modigliani and Papademos 

1975) is a version of the natural rate of unemployment designed to account for expectations.  

Typically, these models specify a measure of inflation as the dependent variable with 

unemployment as a regressor along with other regressors to account for unexpected changes in 

prices.  Thus, allowing one to solve for the implied level of unemployment when inflation is equal 

to zero and the unexpected changes are zero as well by the ratio of the intercept to minus the 

parameter on unemployment. 

For example, Gruen et al (1999) use Australian data to estimate a model of the rate of wage 

inflation, measured by the rate of change of unit labour costs, as a function of the level of 

unemployment, the change in the rate of unemployment and the expected rate of inflation.  They 

also choose to model annual movements and include a lagged dependent variable to determine the 

long run process.  We write this specification as: 
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 
 

 

*

4 4 1 0 1 4 4 1 2

3 1 4 4 1 4 2

5 4 1 4 4

ln ln ln ln

  ln ln

 ln ln

t t t t t

t t t

t t t

ULC P P P U

U ULC P

ULC ULC

 

  

 

           

       

      

  (3.6.1) 

where ULC = unit labour costs per person, and is equal to wages per person divided by non-farm 

productivity per person; P = CPI, P* = expected price level; U = rate of unemployment;  = 1 

quarter change; and 4 = 4 quarter (yearly) change.  An estimate of the NAIRU, (the value of U  

when 4 4 1ln ln 0t tULC P   ), is given as the ratio of the intercept and minus the parameter on 

the unemployment level: 0

2

ˆˆ

ˆ ˆ
ˆ 


   , where 0 2

ˆ ˆ,     are the corresponding estimates of the 

parameters in (3.6.1).  We report the results in Table 3.6.1. 

Table 3.6.1: Phillips curve estimates for Australia 1985:1-2003:4 using Newey-West standard 

errors with 4 lags where: *

4 4 1 4 4 1 1ln ln ,  ln ln ,  , 4t t t t t tULC P P P U x U          y x2 x3 , 

4 1 4 2 4 1 4 4ln ln ,  and ln lnt t t tULC P ULC ULC        x5  x6 . 

 

The results of the Delta CI are listed in Table 3.6.2 and from this table we find that the 

estimated value of the NAIRU ( ̂ ) is determined as 5.401 with a 95% CI based on the t-distribution 

of 3.528 to 7.274.  This implies that we could reject the null hypothesis that the NAIRU is equal to 

zero. 

Table 3.6.2:  The estimate of the NAIRU with the corresponding Delta CI. 

 

                                                                              

       _cons     1.327986   .7940696     1.67   0.099    -.2557362    2.911708

          x6     .5562282   .0751941     7.40   0.000     .4062583     .706198

          x5     .5843068   .1108769     5.27   0.000     .3631699    .8054438

          x4    -.2800783   .4402248    -0.64   0.527    -1.158079    .5979224

          x3    -.2458883   .1144283    -2.15   0.035    -.4741084   -.0176682

          x2     .1671618    .093689     1.78   0.079    -.0196951    .3540187

                                                                              

           y        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                           Newey-West

                                                                              

                                                Prob > F          =     0.0000

maximum lag: 4                                  F(  5,        70) =      45.53

Regression with Newey-West standard errors      Number of obs     =         76

.         newey  y x2 x3 x4 x5 x6 , lag(4)

                                                                              

       theta     5.400769   .9391422     5.75   0.000     3.560084    7.241454

         phi    -.2458883   .1144283    -2.15   0.032    -.4701637   -.0216129

         rho    -1.327986   .7940696    -1.67   0.094    -2.884334    .2283621

                                                                              

           y        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
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However, this is a case where the Fieller CI implies a very different result from the Delta 

estimate.  In this case the 95% Fieller interval is estimated as -13.137 to 6.767.  Thus, we have 

estimated that the higher limit is less than the corresponding Delta one while the lower limit is 

much lower and would imply that a test of the hypothesis that the NAIRU is equal to zero could not 

be rejected at the 95% level based on the Fieller interval.  Note that this would also be true for the 

90% interval when α = .10 (in this case the Fieller interval would be .073 to 6.556).  The contrast 

between the Delta and Fieller CIs is most evident from the line plot shown in Figure 3.6.1. 

Figure 3.6.1  The 95% Fieller and Delta CIs for the NAIRU. 
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3.7 The 50% dose and Willingness-to-Pay. 

The 50% dose problem was the original application that Fieller (1944) considered when he 

first investigated the CI of the ratio of parameter estimates.  In the pharmacology literature, the 50% 

dose refers to the limits of the dose of a drug that would result in a greater than 50% chance that it 

would act on the subject.  In the economics literature, the willingness-to-pay is defined as the 

maximum price someone will pay to purchase the product or service (Hole 2007 presents an 

extensive review).  In this type of analysis, the data consists of a dichotomous response to a 

continuous stimulus – i. e.  the drug dose or a price.  Typically, this problem is modelled by a 
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probability of occurrence/purchase using a binary dependent variable model such as a logit or probit 

estimator, 

 
1

1
k

t t i it t

i

P Y X W


             (3.7.1) 

where X is the variable dose/price and the W’s are other covariates.  The question posed by the 50% 

dose is: What value of X (designated as  ) makes this relationship true? 

1

.5
k

i it t

i

G W


 
      

 
       (3.7.2) 

Where ( )G   is the transformation of the linear function to the probability ( equal to 1 for the linear 

probability model, the cdf for the logit and probit).  Solving for   we have the ratio given by: 

 1

1

.5
k

i it

i

G W



 
        

 


     (3.7.3)17 

The ratio can be evaluated at specific values of W for cases of interest or at the means of these other 

regressors. 

As an example, we use data on the survivors of the Titanic disaster where the dose/price is the 

fare paid for the trip in pounds (see Frey et al 2010) and the survival of the disaster18   

   1 2t tP survive fare female age       .   (3.7.4) 

We use a probit model to estimate the specification defined in (3.7.4).  The results of this estimation 

are given in Table 3.7.1. 

Table 3.7.1 Probit results for willingness-to-pay with data from the Titanic. 

                                                                              

       _cons     -.8152731    .1074258     -7.59    0.000     -1.025824    -.6047223

      female      1.440331    .0910842     15.81    0.000      1.261809     1.618852

         age      -.006552    .0031211     -2.10    0.036     -.0126692    -.0004348

        fare      .0059587    .0010804      5.52    0.000      .0038411     .0080763

                                                                              

    survived         Coef.    Std.  Err.       z     P>|z|      [95%  Conf.  Interval]

                                                                              

Log  likelihood  =   -525.5508                      Pseudo  R2          =      0.2473

                                                Prob  >  chi2        =      0.0000

                                                LR  chi2(3)         =      345.42

Probit  regression                                Number  of  obs      =       1,033

I

  

  

  

  

        

 probit  survive  fare  age  female

 

The Delta method CI for the 50% fare for the average age person (m_age) and assuming 50% 

gender split, results in the estimated CI on the 50% dose/willingness-to-pay defined by the post-
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estimation results given in Table 3.7.2.  The numerator is defined by  1 2
ˆ ˆˆ ˆ .5      m_age  

with a value of .290 and the denominator ˆ ˆ    with a value of .006, and the expected willingness-

to-pay is 48.7 pounds.  From Table 3.7.2 we find that the approximate Delta 95% interval is from 

32.818 to 64.538.19 

Table 3.7.2  The estimated willingness-to-pay and the corresponding Delta CI. 

 

To estimate the Fieller interval we use the margins command to predict the probability of 

survival, where the transformation of the linear combination of the parameters given by 

    1 1

1 2
ˆ ˆ ˆˆ ˆ ˆ .5         fare m_age  provides the predicted probability of survival 

by differing values of the fare, (where 1  indicates the inverse of the cumulative normal 

distribution defined by the normal() function in Stata).  The 95% Fieller CI bounds are estimated as 

33.723 to 67.930. 

                                                                              

       theta     48.67789   8.092075     6.02   0.000     32.81771    64.53806

         phi     .0059587   .0010804     5.52   0.000     .0038411    .0080763

         rho     .2900579   .0583259     4.97   0.000     .1757412    .4043745

                                                                              

    survived        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

       theta:  (-(_b[_cons]+ _b[age]*m_age + _b[female] * .5) / _b[fare] )

         phi:  (_b[fare])

         rho:  -(_b[_cons]+ _b[age]*m_age + .5*_b[female])
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Figure 3.7.1  The Fieller and Delta CIs for the 50% level of the willingness to pay for 

survival on the Titanic 
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In this case the Delta and Fieller intervals coincide quite closely since the t-statistic on fare is 

5.52 although the upper bound of the Fieller interval indicates slightly higher fares than the Delta.  

Note that in Figure 3.7.1 the reference line for the predicted probability of survival is put at .5.  

However, alternative levels could have been chosen or ranges of values i. e. between .4 and .6 

instead. 

3.8 Indirect Least Squares as Two Stage Least Squares 

When a model is exactly identified with one endogenous regressor, the Two-Stage Least 

Squares (2SLS) and the instrumental variable (IV) estimates can be shown to be equivalent to the 

indirect least-squares (ILS) estimate of the structural parameter.  Furthermore, when the ILS 

estimator is the ratio of two parameter estimates from equations that are estimated using seemingly 

unrelated regressions (SUR) the Delta CI is equivalent to the CI from the usual 2SLS estimation 

procedure.  Hirschberg and Lye (2017) examine the Delta and Fieller CIs for the 2SLS/IV estimator 

of the coefficient of the endogenous regressor under these conditions.   

Suppose the equation of interest is,  

0 1 1 1 2 2i i i i K Ki iY X W W W u             (3.8.1) 
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where Y  is the dependent variable of interest, X  is an endogenous regressor vector, kW  are the 

predetermined or exogenous regressors and u is the error term.  2SLS/IV estimation requires r 

instruments 1 rZ Z   1r  that satisfy two conditions: (i) they are uncorrelated with u and (ii) are 

correlated with X .  When r = 1 we say that (3.8.1) is exactly identified.  In this case the reduced 

form equation of X is, 

10 11 1 11 1 12 2 1 1i i i i K Ki iX Z W W W v            (3.8.2) 

and similarly, the reduced-form equation of Y is defined by: 

20 21 1 21 2 22 2 2 2i i i i K Ki iY Z W W W v            (3.8.3) 

The ILS estimator of 1 in (3.8.1) is the ratio:  

21

11

ˆ ˆ

ˆ ˆ


  


        (3.8.4) 

where 21̂ is the OLS estimator of 21  in (3.8.3), 11̂ is the OLS estimator of 11  in (3.8.2) and the 

covariance of these two parameter estimates is estimated via the application of the SUR technique.   

For example, Acemoglu, etal (2001) examine the effect of institutions on economic 

performance.  In this case the structural equation is, 

log( )i i i iy R u    X       (3.8.5) 

where yi is income per capita in country i, Ri is the protection against expropriation measures and Xi 

is a vector of other covariates that includes dummy variables for the different continents on which 

the countries are located and the absolute value of their latitude.  

Alternately we can consider the two reduced form equations.  The protection against 

expropriation variable Ri is treated as endogenous, with reduced form defined by: 

 10 11 1 1logi i i iR M v      X      (3.8.6) 

where Mi is the settler mortality rate in 1,000 mean strength.  The reduced form equation for log 

income per capita is 

20 21 2 2log( ) log( )i i iy M v      iX     (3.8.7) 

This model is just-identified with  log iM being excluded from (3.8.5).  In this case the indirect 

least squares estimate of the structural parameter  ILS  is defined as the ratio of the parameters: 
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21

11

ˆ

ˆ
ILS


 


.         (3.8.8) 

To demonstrate this equivalence of the 2SLS/IV and the ILS approaches, we provide the 

2SLS/IV estimates for the model specified in (3.8.5) where  log iM  is used as the instrument in 

Table 3.8.1.  From this result, we note that the estimate for the structural parameter    is given as 

1.107 with a 95% CI of .242 to 1.972 and would result in the rejection of the null hypothesis that 

0   at the 5% level of significance. 

Table 3.8.1 The Stata estimation results for the 2SLS application to the model where:

log( ),  log( ),  ,  and i i iy M R  logpgdp95 logem4 avexpr africa, asia, lat_abst,

iXother_cont  
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Table 3.8.2 The Stata estimated parameters for the two reduced form equations via SUR. 

 

In Table 3.8.2 we present the results of the SUR estimation for the two reduced form 

regressions.  From (3.8.8) the ILS approach results in the estimate of the structural parameter as the 

ratio of the two parameters estimated for the logem4 regressor in the two equations.  The Delta 95% 

CI for the ratio of these two parameter estimates is given in Table 3.8.3.  From this table, we note 

that the ILS estimate of the structural parameter and its CI is identical to the 2SLS/IV estimate 

reported in Table 3.8.1. 20 

Table 3.8.3 The Stata results of the estimation of the ratio defined by 21

11

ˆ

ˆ
ILS


 


 

 

                                                                              

       _cons     7.729295   .9109629     8.48   0.000     5.943841     9.51475

  other_cont     1.061534   .8031773     1.32   0.186    -.5126647    2.635733

        asia     .4719882   .4788021     0.99   0.324    -.4664467    1.410423

      africa    -.2579581   .3899443    -0.66   0.508    -1.022235    .5063187

    lat_abst     2.009322   1.324067     1.52   0.129    -.5858021    4.604447

      logem4    -.3403178   .1742797    -1.95   0.051    -.6818998    .0012641

avexpr        

                                                                              

       _cons     9.997378   .5091475    19.64   0.000     8.999467    10.99529

  other_cont     .1847984   .4489049     0.41   0.681    -.6950391    1.064636

        asia    -.5245579    .267608    -1.96   0.050     -1.04906   -.0000559

      africa    -.7228463   .2179443    -3.32   0.001    -1.150009   -.2956833

    lat_abst     1.046296   .7400363     1.41   0.157    -.4041483    2.496741

      logem4    -.3767581   .0974069    -3.87   0.000    -.5676721    -.185844

logpgp95      

                                                                              

                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

                                                                          

avexpr                64       5    1.194735    0.3277      31.20   0.0000

logpgp95              64       5    .6677511    0.5839      89.81   0.0000

                                                                          

Equation             Obs   Parms        RMSE    "R-sq"       chi2        P

                                                                          

Seemingly unrelated regression

                                                                              

       theta     1.107077   .4413078     2.51   0.012     .2421296    1.972024

         phi    -.3403178   .1742797    -1.95   0.051    -.6818998    .0012641

         rho    -.3767581   .0974069    -3.87   0.000    -.5676721    -.185844

                                                                              

                    Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

       theta:  _b[logpgp95:logem4] / _b[avexpr:logem4]

         phi:  _b[avexpr:logem4]

         rho:  _b[logpgp95:logem4]
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Figure 3.8.1 Fieller 95% Confidence Interval for the structural parameter. 
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Following the derivation of the Fieller CI as discussed in Section 2.3, we find that there are 

two roots for the quadratic equation (2.3.4) as .609 to -200.843.  We note that these two roots bear 

little similarity to the Delta bounds and the upper bound is estimated as below the lower bound. 

This is an example of the Fieller confidence interval resulting in the complement of a finite interval 

since in (2.3.4)  2 4 .031 0b ac    and .006 0a    . If we construct the line plot representation 

in the range of the Delta CI as shown in Figure 3.8.1, we find the appropriate interpretation of the 

Fieller CI is (.609 to  ) or that the upper bound of the 95% Fieller CI is not defined.  This would 

imply that we can reject the hypothesis that the parameter estimate is less than or equal to zero but 

there is no limit to the parameter estimate in the positive direction.  A more thorough discussion of 

this result is available in Hirschberg and Lye (2017). 

4.0 Summary and Conclusions  

 In this paper, we have presented a comparison between the Fieller and Delta methods for the 

approximation of the CI for cases where the quantity of interest is the ratio of a linear combination 

of parameter estimates.  We present this method with emphasis on the application of the Stata 

statistical software routine.  We also include programs in the R computer software in the 

supplemental materials along with a link to the datasets employed.21  The examples of the 

consideration of ratios has been shown in various econometric applications.   
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 One of the conclusions that can be drawn from these examples is that although the Fieller 

and the Delta CIs coincide in many cases, there are some situations where the use of the Fieller and 

Delta result in far different conclusions.  This should not be surprising since both methods provide 

estimated intervals and not the true CI for a ratio of normally distributed random variables.  Recent 

studies of the coverage of the CIs of the two methods has found that the Fieller CI conforms more 

closely to the true interval when Delta and the Fieller result in very different outcomes.  Using the 

simple graphical method demonstrated in this paper, the Fieller can be used in any application 

which employs a ratio of parameter estimates.  Our advice is to use both methods and when they 

differ, to use the Fieller interval that has been shown to provide the superior level of coverage.22 

 A general caveat that applies for both the Delta and the Fieller is the assumption that the 

parameter estimates are normally distributed or asymptotically normally distributed.  As is usually 

the case, this assumption is dependent on many of the other assumptions implied by the correct 

specification of the functional forms and the error generating process.  
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End Notes   

1  Where α is the significance level of the test statistic. 
2  For most of the examples used here we assume a linear model such that   X B XB  and that errors are 

identically and independently distributed which implies that 2   I .  However, this can be relaxed by using robust 

standard errors such as Huber-White standard errors, clustered standard errors or Newey-West standard errors. 
3  This assumption may be relaxed to allow for the parameters to have an asymptotically normal distribution 

however the methods discussed here will then be subject to an additional degree of approximation. 
4  These commands are similar to the ones used for the examples presented in Section 3.  The complete programs 

and data used for each example application is included in the supplementary materials for this article along with the 

equivalent set of programs in R. 
5   b[_cons] indicates the estimate for the parameter 1 , _b[x2] indicates the estimate for the parameter 2  and 

_b[x3] indicates the estimate for the parameter 3 .   
6  Note that we are not changing the values of x3 we are just using this as a temporary name – the margins 

command requires that the variable names used are same as one of the regressors in the equation. 

7   The Delta CI for ̂  listed by Stata is based on the standard normal instead of the t-distribution.  In some 

cases, this is appropriate while in others it is not.  We note when the Delta CI is based on the t-distribution. 
8  This method for inverse tests is more fully developed for the turning points in higher order polynomials in Lye 

and Hirschberg (2012). 
9  This Section follows the techniques presented in Hirschberg and Lye (2010b).   
10 Note that a similar result can be found for w. 
11  These bounds are based on the t-distribution as opposed to the z-distribution used by the Stata nlcom routine 

as reported in Table 3.3.2. 
12  Note that an assumption in the estimation of dynamic models of this form with OLS is that the errors are not 

subject to autocorrelation. 
13  Because the non-linear estimation parameters are asymptotically normally distributed we employ the z- 

statistic for both the Fieller and Delta intervals. 
14  See Hirschberg and Lye (2010c) for more details on the nature of the relationship between the CIs for both 

methods.  In general, when the denominator is significantly different from zero and the correlation between the 

denominator and the numerator is the same sign as the ratio the Delta and the Fieller will tend to coincide.  
15  See https://www.philadelphiafed.org/research-and-data/real-time-center/greenbook-data/ . 
16  This section is based on materials from Hirschberg and Lye (2010a).   
17  Note that  1 .5 0G   for both the logit and probit models and  1 .5 .5G   for the linear probability model. 

18  Since the passengers did not know what the possibility of the disaster was prior to purchasing the ticket this is 

not a traditional willingness-to-pay problem but more akin to a 50% dose model.   
19  In this case the appropriate distribution for the CI is the standard normal z because these parameters are the 

result of a maximum likelihood estimation procedure and are thus asymptotically normally distributed. 
20  Note that since the regressors in these equations are the same the estimated parameters from the SUR are 

identical to the OLS results if they were estimated separately.  However, the SUR approach provides an estimate of the 

covariance between the parameter estimates of the two equations that is required for the correct estimation of the Delta 

and Fieller CIs.  In this case we would use the standard normal distribution since the parameter estimates are 

asymptotically normally distributed. 
21  The programs are listed in the working paper that can be found in the working paper “Confidence intervals for 

ratios: Econometric Examples in Stata and R that can be found at: 

https://fbe.unimelb.edu.au/__data/assets/pdf_file/0005/2704649/2037_Joe-Hirschberg_Fieller-Examples-WP-

version.pdf  The data can be found at: https://data.mendeley.com/datasets/6t7mchv462/1. 
22  The analysis of the difference between these two methods is discussed in Hirschberg and Lye 2010c,2017.  

 

https://www.philadelphiafed.org/research-and-data/real-time-center/greenbook-data/
https://fbe.unimelb.edu.au/__data/assets/pdf_file/0005/2704649/2037_Joe-Hirschberg_Fieller-Examples-WP-version.pdf
https://fbe.unimelb.edu.au/__data/assets/pdf_file/0005/2704649/2037_Joe-Hirschberg_Fieller-Examples-WP-version.pdf
https://data.mendeley.com/datasets/6t7mchv462/1
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