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1. INTRODUCTION

We study the combinatorial problem of switching lattice synthesis. The idea of using
regular arrays of switches, each cell connected to its neighbours, is old and has many
forms. For example, in the “rectangular logic arrays” of Akers [1972], each switch is a
relatively complex 3-input 2-output unit implementing either the median-of-3 function
or the Boolean if-then-else function, and switches are arranged so that a current can
flow top-down and left-to-right only (for appropriate orientation of the array).

The potentials of nanoscale technologies [Cui and Lieber 2001; Chen et al. 2003;
Eshaghian-Wilner et al. 2006] have created interest in types of “crossbar” devices that
can operate based on, say, molecular electronics. In this context a “switch” is ideally a
very simple device, such as a four-terminal switch [Altun and Riedel 2012]. The four
terminals of the switch link to the four neighbours of a lattice cell, so that these are
either all connected (when the switch is on), or disconnected (when the switch is off).
The direction of flow in the resulting lattice structure has fewer constraints, compared
to Akers’ lattices, allowing for paths that meander through the lattice.

In more detail, an n-by-m switching lattice is a wire mesh that results from laying n
parallel wires perpendicularly on top of m parallel wires, with a four-terminal switch
inserted wherever two wires cross. (We picture the n wires laid down horizontally, so
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Fig. 1: (a) a 5-by-5 switching lattice, (b) its connecting path highlighted, (c) the four
neighbouring cells to which cell c is 4-connected, and (d) the eight neighbouring cells
to which c is 8-connected

that we have n rows and m columns of switches.) The switching lattice can be used to
implement a Boolean function by, firstly, connecting all the wire ends at the top to a
“top plate” T and all the wire ends at the bottom to a “bottom plate” B and, secondly,
having each four-terminal switch controlled by an input, see Figure 1(a). An input wire
may be inverted, so we associate a Boolean literal, x or ¬x, with each four-terminal
switch. An input may also be held constant (0 or 1), so in what follows, each switch, or
wire junction, may be labelled with some literal ℓ, 0, or 1.

Some input combinations will create a (possibly meandering) path between the top
and bottom plates; we associate those combinations with output being 1, see Fig-
ure 1(b). Combinations that leave the plates unconnected correspond to output 0.

A switching lattice can similarly be equipped with “left” and “right” plates and
left-to-right connectivity can be associated with a Boolean function [Altun and Riedel
2012]. This way, a single lattice can implement two different functions, although not
simultaneously. We will not make use of that in this paper, but it is worth keeping in
mind that this provides a second aspect on minimisation, as it can be used to minimise
the number of lattices required to implement a set of functions.

The plates T and B are connected if and only if it is possible to travel between T
and B by stepping on a sequence of 4-connected on cells, see Figure 1(c). We call such
a sequence a TB-path. As observed by Altun and Riedel [2012], there is no 4-connected
on path between T and B if and only if there is a sequence of 8-connected off cells
(Figure 1(d)) that connect L and R. We call such a sequence an LR-path.

Figure 2 shows an implementation of (x1 ∧ x4) ∨ (x2 ∧ x3). To see that this is the
function implemented, note that a connecting (TB-) path corresponds to a conjunction
of literals, and the existence of a connecting path corresponds to a disjunction of those
conjunctions, one disjunct per possible path. Enumerating the possible paths therefore
leads to a sum-of-products representation of the Boolean function. Hence for the left
lattice, we have (writing conjunction as juxtaposition): ϕ = x1x4 ∨ x2x3 ∨ ¬x1x2x3 ∨
x1x2x3x4∨¬x1x2x3∨x1x2x3x4∨¬x1x2x3, which is readily simplified to (x1∧x4)∨(x2∧x3).
Figures 2 (a) and (b) illustrate a TB-path and a LR-path respectively. Observe that if
each literal highlighted in Figure 2(b) is false, there can be no TB-path of true literals.
The 3-by-3 switching lattice in Figure 2 is not minimal. The 2-by-2 lattice Figure 2(c)
implements the same function (x1 ∧ x4) ∨ (x2 ∧ x3). We shall soon see a less trivial
example of this kind of equivalence.

We use ∧, ∨, and ¬ for conjunction, disjunction, and negation, resp.
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Fig. 2: (a) a 3-by-3 switching lattice with a TB-path highlighted, (b) an LR-path high-
lighted, and (c) an equivalent 2-by-2 switching lattice.

c1 : (¬x2 ∧ ¬x5 ∧ ¬x6 ∧ x7 ∧ ¬x8)
c2 : ∨ (¬x1 ∧ ¬x2 ∧ ¬x4 ∧ x5)
c3 : ∨ (x3 ∧ ¬x5 ∧ ¬x6)
c4 : ∨ (¬x1 ∧ ¬x2 ∧ ¬x4 ∧ x8)
c5 : ∨ (¬x1 ∧ x3)
c6 : ∨ (¬x2 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6 ∧ x8)
c7 : ∨ (¬x1 ∧ ¬x2 ∧ ¬x5 ∧ x7 ∧ ¬x8)

(a)

r1 : (¬x2 ∧ x3)
r2 : ∨ (¬x1 ∧ x6)
r3 : ∨ (x3 ∧ x5 ∧ x7 ∧ x8)
r4 : ∨ (x3 ∧ ¬x4 ∧ ¬x8)
r5 : ∨ (x3 ∧ ¬x4 ∧ ¬x5)
r6 : ∨ (¬x1 ∧ ¬x5)

(b)

Fig. 3: ISOP form formulas for (a) a function ϕ and (b) its dual

r1
r2
r3
r4
r5
r6

c1 c2 c3 c4 c5 c6 c7

¬x2 ¬x2 x3 ¬x2 x3 ¬x2 ¬x2
¬x6 ¬x1 ¬x6 ¬x1 ¬x1 ¬x6 ¬x1
x7 x5 x3 x8 x3 x8 x7
¬x8 ¬x4 x3 ¬x4 x3 ¬x4 ¬x8
¬x5 ¬x4 x3 ¬x4 x3 ¬x4 ¬x5
¬x5 ¬x1 ¬x5 ¬x1 ¬x1 ¬x5 ¬x1

¬x1 ¬x1 ¬x6 ¬x1
¬x2 ¬x4 ¬x5 1
¬x4 ¬x2 ¬x8 x3
x8 x7 x5 x3

(a) (b)

Fig. 4: (a) A lattice generated by the DP construction, and (b) a smaller but semanti-
cally equivalent lattice generated by our method

In this paper we are interested in the automated synthesis of minimal lattices. Al-
tun and Riedel [2012] propose a synthesis method for switching lattices—henceforth
referred to as the dual-product construction, or DP—as follows. For the target function
ϕ, find an irredundant sum-of-products (ISOP) form ψ of ϕ. Similarly let ψ′ be ϕ’s
dual (that is, ϕ′ s.t. ϕ(x1, . . .) = ¬ϕ′(¬x1, . . .)) in ISOP form. Let t1 ∨ · · · ∨ tm = ψ and
t′1 ∨ · · · ∨ t′n = ψ′. Now form an n-by-m switching lattice {A[i, j] | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
by setting the input for A[i, j] to some literal ℓ which is shared by t′i and tj . (The fact
that ψ and ψ′ are duals guarantees that such a shared ℓ exists for all i and j.)

Example 1.1. Consider a particular function ϕ, say, the function we have denoted
b12.02 in Table I. Altun and Riedel use Espresso [Brayton 1984] to find an ISOP form
for the function, such as the form shown in Figure 3(a), together with an ISOP form for
its dual, say, the one shown in Figure 3(b). A switching lattice A for ϕ is now created
by selecting, for entry A[i, j], any literal that is shared by ri and cj, the ith product of
the dual and the jth product of ϕ. Figure 4 (left) shows the resulting switching lattice.
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Fig. 5: Constructing lattices (a) for ϕ1 ∨ ϕ2, and (b) for ϕ1 ∧ ϕ2.

The DP construction gives a systematic way of building the lattice, and it comes
with the dual function implemented for free. However, it tends to lead to non-minimal
lattices, partly because it ties the dimensions of the lattices to the sizes of ISOP form
formulas, and partly because it does not utilise Boolean constants as input.

In this paper we compare the ISOP-based method with an “anytime” method which
uses reduction to SAT. Our method uses the ISOP-based approach to find an upper
bound on dimensions. It then searches for successively better implementations until
either an optimal solution is found, or else a preset time limit has been exhausted.
In our experiments, the alternative method can decrease lattice sizes considerably;
Tables I and II show cases of reduction by 79%. For Figure 3’s ϕ, our method generates
the smaller switching lattice shown in Figure 4 (right). The reader is encouraged to
ponder the possible top-to-bottom paths through this smaller switching lattice and
test the equivalence with Figure 4 (left). The contributions of this paper are:

— an “anytime” algorithm for construction of switching lattices for arbitrary logic func-
tions, based on reduction to SAT and dichotomic search;

— the first algorithm we are aware of for creating minimal-size switching lattices; and
— experiments showing that minimal-size switching lattices are often substantially

smaller than those created by the DP construction.

In Section 2 we show how to construct switching lattices in a compositional way. In
Section 3 we show that the problem of deciding the satisfiability of a Boolean function,
represented by a switching lattice, is NP-complete. Section 4 gives details of how we
synthesize minimal lattices using reductions to SAT. Section 5 provides experimental
results, and Section 6 concludes.

2. COMPOSITION OF SWITCHING LATTICES

Given switching lattices L1 and L2 implementing functions ϕ1 and ϕ2, we can easily
construct lattices for ϕ1 ∨ ϕ2 and ϕ1 ∧ ϕ2, as illustrated in Figure 5.

In some cases, we can avoid introducing the padding rows/columns. When construct-
ing ϕ1 ∧ ϕ2, we can omit the padding row if both lattices are of width 1. Similarly, we
can omit padding for ϕ1 ∨ ϕ2 if both lattices are of height at most 2.

This composition allows us to directly construct a switching lattice implementing an
arbitrary Boolean formula ϕ—we convert ϕ to negation normal form (NNF), and then
construct the lattice in a bottom-up fashion. Let |ϕ| denote the number of {∧,∨} terms
in the input encoding of ϕ. The transformation to NNF does not increase |ϕ|; therefore
in the worst case, this yields a lattice of size O(|ϕ|2).

We can also directly construct a lattice for the complement ¬ϕ. However, the trans-
formation is slightly more involved; given a lattice L for ϕ, we must construct some
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0 0 01 1 1 11 1

¬a ¬a¬a

¬b ¬b¬b

¬c ¬c¬c

¬d ¬d¬d

¬e ¬e¬e

¬f ¬f¬f

¬g ¬g¬g

¬h¬h¬h

¬i ¬i¬i

(a) (b)

Fig. 6: Constructing the complement of a 3× 3 lattice.

lattice L′ that is connected for every truth assignment that makes L disconnected, and
vice versa. The difficulty is the asymmetry in connectivity; as falsifying (LR-) paths in
ϕ are 8-connected, each literal in ¬ϕ must be connected to all 8 neighbours. We can
simulate this by padding each literal with blocks of 1; however, we must be careful not
to permit the signal to skip literals. We can achieve this by transposing the original
lattice, and replacing every element with at most 3 copies, and adding rows of 0 and 1
to connect diagonals. Example 2.1 shows the idea.

Example 2.1. Consider the 3×3 lattice L shown in Figure 6(a). Every TB-path path
in L (say, [a, d, e, h]) must correspond to an LR-path in L′. Figure 6(b) shows a possible
construction for L′. The added 1 blocks ensure that ¬e is connected to all eight neigh-
bours on vertical paths, but horizontal (false) paths must pass through the originally
4-connected literals. We could discard the left- and right-most (shaded) columns; they
are included to better illustrate the repeated structure of the construction.

Given an n×m lattice L, this construction will produce a (2m− 1)× 3n lattice L′ for
the complement. More precisely, we define, for i ∈ [1, 2m− 1] and j ∈ [1, 3n]:

L′(i, j) =







¬L(⌈ j

3⌉,
i+1
2 ) for i odd, j ∈ [1, 3n]

0 for i even, j = 3k − 1, k ∈ [1, n]
1 for i even, j 6= 3k − 1, k ∈ [1, n]

3. SATISFIABILITY FOR SWITCHING LATTICES

At a first glance, the regular shape of a switching lattice may suggest that satisfiability
may be easier determined in this form. We show, however, that it is no easier than
generalised SAT.

Define the problem LATTICE-SAT as given a switching lattice, determine if there is
an assignment θ which connects the top T to the bottom B.

THEOREM 3.1. LATTICE-SAT is NP-complete.

Proof. Given a candidate assignment θ, we can easily test if θ satisfies the lattice L
by checking if there is some path between the top and bottom plates using only literals
that are true under θ. LATTICE-SAT is therefore in NP.

l11 l12 l13

l21 l22 l23

l31 l32 l33

1 1 1

1 1 1

...

We use reduction from 3SAT to show that LATTICE-SAT is
NP-hard. Consider an instance P = 〈V,C〉 of 3SAT, with C =
{{l11, l12, l13}, . . .}. We build a 3×(2n−1) switching lattice L as shown
to the right, by introducing a row for each clause, and adding a row
of 1s between successive clauses. This construction is linear in the
size of P .

Consider some assignment satisfying P . For each clause, there is
some literal which is true. In the corresponding row of L, that literal
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will also be true, connecting the adjacent 1 rows. Since such a literal exists for every
row, there must be some vertical path through the lattice. Conversely, consider an
assignment θ which admits a path through L. Each row must have some true literal,
connecting the adjacent 1 rows. Since each clause in P has a corresponding row in L, θ
must also satisfy each clause in P . Therefore, L is satisfiable iff P is satisfiable. Hence
LATTICE-SAT is NP-hard.

We conclude that LATTICE-SAT is NP-complete. ✷

4. SYNTHESIZING N ×M SWITCHING LATTICES

The DP construction [Altun and Riedel 2012] computes ISOP formulas for the function
ϕ and its dual ϕ′, and constructs a lattice with one column for each term in ϕ, and one
row for each term in ϕ′. While this construction is general, there are drawbacks. First,
the resulting lattice may become quite large, as typically at least one of ϕ and ϕ′ will
require exponentially many terms, and the circuit is formulated so that there can be
no sharing between paths. Second, it prevents us from using arbitrary functions for
the vertical and horizontal components; the “horizontal” function will always be the
dual of the “vertical” function. Finally, it does not allow the use of fixed inputs.

We instead formulate the synthesis of an n × m lattice as a satisfiability problem
in quantified Boolean logic, which can be solved by quantified Boolean formula (QBF)
solvers, for example, DepQBF [Lonsing and Biere 2010]. We can then synthesize a min-
imal circuit by repeatedly solving formulas for varying values of n and m.

Roughly, the problem is formulated as:

∃L . ∀V . ϕ(V ) ⇔ γ(L, V )

whereL is an n×m lattice, V is the set of inputs, and γ evaluates L under a given input.
If the formula is true, the corresponding assignment to L gives us an implementation
of ϕ. Let V + = V ∪ {1}, and S = V + ∪ {¬v | v ∈ V +} be the possible literals over V
together with 1 and 0. The crucial decision is, for each lattice position lij , which literal
ℓ ∈ S to place at that position. We represent this decision by the literals Jlij = ℓK. Some
literal must be used, so we require that ∀i, j.

∑

l∈S Jlij = ℓK = 1.
We must be aware of some subtleties in the formulation of γ. The obvious approach

is to express a path from top to bottom using path variables pij . A lattice element can
be on the path only if it evaluates to true:

pij ⇒
∨

v∈V +

(Jlij = vK ∧ v) ∨ (Jlij = ¬vK ∧ ¬v).

These must be connected to a neighbour to form a path. Let adj4(i, j) denote the posi-
tions adjacent to (i, j), that is

adj4(i, j) = {(i′, j′) | 1 ≤ i′ ≤ n, 1 ≤ j′ ≤ m, |i− i′|+ |j − j′| = 1}.

Then each path position should be adjacent to another path position:

pij ⇒
∨

{pi′j′ | (i
′, j′) ∈ adj4(i, j)}.

Unfortunately, this formulation gives rise to spurious paths such as that in Figure 7(b),
where a set of elements provide mutual reachability, without any incoming edge. This
is a common issue in path-finding problems, motivating the adoption of stable-model
semantics [Gelfond and Lifschitz 1988] in answer-set programming solvers [Marek and
Truszczyński 1999]. We are not aware of any QBF solvers that support stable model
semantics.

Observe, however, that for any valid (non-redundant) path, each internal node on
the path is adjacent to exactly two other nodes on the path. For a spurious path to B to
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(a) (b) (c)

Fig. 7: (a) A complex but valid connection; (b) a spurious path permitted by the naive
formulation; (c) an assignment that leads to a spurious path, but also contains a valid
connection.

exist, there must not only be a cycle of mutually-supporting elements, there must also
be some path from the cycle to B – that is, there must be some element that is both
part of a cycle, and has some path to B. This element has 3 neighbours in the path.

Another convenient simplification is that we can tolerate the existence of spurious
paths, so long as some TB-path exists. Consider the case shown in Figure 7(c); even
though there is a spurious cycle, the requirement for degree 1 elements at the source
and destination ensures the existence of a valid path.

We then add the constraints:

(
∑

j

p1j ≤ 1) ∧ (
∑

j

pnj ≤ 1)

to ensure that a path cannot both start and end at the top or bottom. Moreover, we add

∀ j . ¬p2j ⇒ ¬p1j

∀ j . ¬p(n−1)j ⇒ ¬pnj

∀ i ∈ [2, n− 1], j . ((
∑

(i′,j′)∈adj4(i,j)

pi′j′) 6= 2) ⇒ ¬pij

Of these, the first two handle connectivity for the first and last row; elements in these
rows are effectively only adjacent to one other element. The third handles connectivity
of the remaining elements, ensuring that an intermediate element can only appear in
a path if it has degree 2. We finally ensure that a path must exist whenever ϕ is true:

ϕ(V ) ⇒ pn1 ∨ . . . ∨ pnm.

We encode the sum expressions in these constraints using sorting networks (see for
example, Ası́n et al. [2011]).

The formulation thus far can be trivially satisfied by setting every element to 0. We
must also ensure that there is no path from T to B whenever ϕ(V ) evaluates to 0. As
already pointed out, there is no path from T to B iff there is some falsifying LR-path.
We can encode these LR-paths in exactly the same manner as the TB case; the only
difference is that a path variable is forced to false if the switch is connected, and we
must include additional adjacent vertices. We introduce new variables p̄ij to represent
the path from L to R. They require the corresponding lattice element to be false:

p̄ij ⇒
∨

v∈V +

(Jlij = vK ∧ ¬xv) ∨ (Jlij = ¬vK ∧ xv).
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Let adj8(i, j) denote the set of positions that are either adjacent or diagonal to (i, j),
that is,

adj8(i, j) = {(i′, j′) | 1 ≤ i′ ≤ n, 1 ≤ j′ ≤ m, |i− i′| ≤ 1, |j − j′| ≤ 1, (i, j) 6= (i′, j′)}

and sum8(i, j) =
∑

(i′,j′)∈adj8(i,j)
p̄i′j′ . Then the constraints are

(
∑

i

p̄i1 ≤ 1) ∧ (
∑

i

p̄im ≤ 1)

∀ i . (sum8(i, 1) 6= 1) ⇒ ¬p̄i1

∀ i . (sum8(i,m) 6= 1) ⇒ ¬p̄im

∀ i, j ∈ [2,m− 1] . (sum8(i, j) 6= 2) ⇒ ¬p̄ij

¬ϕ(V ) ⇒ p̄1m ∨ . . . ∨ p̄nm

4.1. Unfolding to SAT

Unfortunately, QBF solvers are nowhere near as robust as modern SAT solvers. We
ran the QBF model over night using DepQBF [Lonsing and Biere 2010], a standard off-
the-shelf QBF solver, on a 3×3 lattice with 7 inputs, and it had not completed in 16
hours.

A simple solution is to unfold the universally quantified variables – that is, introduce
a copy of ϕ(V ) ⇔ γ(L, V ) for each input assignment θ to V . This gives us a quantifier-
free formula that can be passed to a SAT solver.

This unfolding is clearly infeasible for circuits with many inputs, as we must intro-
duce O(2|V |nm) path variables (as well as the corresponding sorting networks). How-
ever, each unfolded copy can be simplified considerably. ϕ(V ) becomes a constant – so
we only need to encode either a positive or negative path for each copy, rather than
both, and the connectivity constraint on pij becomes a set of clauses. Where previously
we had pij and p̄ij , we now introduce variables pθij for each lattice element (i, j) and
assignment θ. Where ϕ evaluates to 1, only connected elements may be on a path:

∀ θ ∈ Θ, ϕ(θ) = 1 . pθij ⇒
∨

s∈S,θ(s)=1

Jlij = sK .

These path variables are constrained to form a TB-path as described above. And, if
ϕ(θ) = 0, only disconnected elements may be on a path:

∀ θ ∈ Θ, ϕ(θ) = 0 . pθij ⇒
∨

s∈S,θ(s)=0

Jlij = sK .

These path variables are constrained to form an LR-path as described above.

4.2. Restricted formulation

The SAT formulation, as mentioned above, requires solving a series of SAT instances
with sizes that grow exponentially with |V |. We would obviously prefer a model without
this up-front cost.

Rather than maintain a separate set of path variables for each assignment, we would
prefer to maintain only one path per term in the ISOP formulation. Unfortunately, in
an arbitrary switching lattice, different assignments satisfying a given product may
follow completely different energized paths; we must ensure that a path exists for all
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assignments satisfying the product. This leads to a restricted synthesis problem, where
we forbid paths from passing through literals that are don’t-care in the given product.

For each term t =
∧

k ℓk in the ISOP of ϕ we construct a set of path variables ptij
which are definitely true in any model of this term, that is

ptij ⇒ Jlij = 1K ∨
∨

k

Jlij = ℓkK .

These path variables are constrained to form a TB-path.
Similarly for each term t′ = ∧kℓ

′
k in the ISOP of the dual of ϕ we construct a set of

path variables ptij which are definitely false when this term is false, that is

pt
′

ij ⇒ Jlij = 0K ∨
∨

k

Jlij = ¬ℓ′kK .

These path variables are constrained to form an LR-path.

Example 4.1. Consider formulating a lattice for the function ϕ whose ISOP form
is given in Figure 3(a), and ISOP form of the dual is given in Figure 3(b). Unfolding
would normally create a set of path variables for each of the 128 different possible
assignments to {x1, . . . , x8}. In the restrict formulation we create 7 sets for the terms
in the ISOP form and 6 sets for the terms in the ISOP form of the dual. For example
for the term x3 ∧ ¬x5 ∧ ¬x6 in the ISOP of ϕ we would create path variables that hold
for any solution to this term

px3∧¬x5∧¬x6

ij ⇒ Jlij = 1K ∨ Jlij = x3K ∨ Jlij = ¬x5K ∨ Jlij = ¬x6K .

And for the term ¬x2 ∧ x3 in the ISOP of the dual of ϕ we create path variables that
are constrained to hold when this term is false:

p¬x2∧x3

ij ⇒ Jlij = 0K ∨ Jlij = x2K ∨ Jlij = ¬x3K .

Because the restricted form forces a single path for each assignment satisfying a term
in the ISOP, or dissatisfying a term in the ISOP of the dual, it is not guaranteed to
allow minimal solutions. For this formula the full formulation finds a better answer,
but the size of the formula is substantially smaller, so the restricted formulation is
solved much faster.

Note that the circuit computed by Altun and Riedel [2012] is a correct upper bound
for the restricted formulation, since each column provides a correct path for the terms
in the ISOP and each row a correct path for terms in the ISOP of the dual.

4.3. Synthesizing minimal lattices

Of course, these formulations only allow us to test whether there exists some n × m
lattice implementing ϕ. Given that we have direct methods for computing a feasible
solution LU , we can simply progressively try all lattice sizes smaller than |LU |, and
return the smallest one that is feasible. We can improve this naive method by making
the following observation:

THEOREM 4.2. If some n×m lattice L implements ϕ, there is also an n′ ×m′ lattice
L′ implementing ϕ, for any n′ ≥ n and m′ ≥ m.

L

1

0
Proof. Assume L is annotated with literals l11, l21, . . . , lnm. We

now construct an n′ ×m′ lattice L′ by filling additional rows with
1, then filling additional columns with 0, as shown here. Any TB-
path in L can be extended to a TB-path in L; similarly, any LR-path
can be extended through the 0 elements in L′. Therefore, L′ is equivalent to L. ✷
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minimize split(ϕ, max)
lb := 1; ub := max
best := none

failed := ∅
while (lb ≤ ub)

mid := lb+ub

2

found := false

% Collect all non-dominated configurations, no larger
% than mid, that haven’t already been eliminated
C := {(n,m) | n×m ≤ mid,

n× (m+ 1) > mid,
(n+ 1) ×m > mid,
∀ (n′,m′) ∈ failed . n > n′ ∨m > m′}

while (C 6= ∅ ∧ ¬found)
(n,m) := (n′, m′) ∈ C with maximal n′ ×m′

C := C \ {(n,m)}
res := synth(ϕ, n,m)
if (res = fail)

% Eliminate configurations dominated by (n,m)
failed := failed ∪ {(n,m)}

else
best := res
found := true

% Restrict search to smaller lattices
ub := n×m− 1

if (¬found)
lb := mid + 1

return best

Fig. 8: A dichotomic search strategy. Note that we check all maximal configurations
no larger than mid, rather than just those with w × h = mid.

This means that, conversely, if we find that there is no n×m lattice implementing ϕ,
we need never consider any strictly smaller lattices (that is, n′×m′ for n′ ≤ n,m′ ≤ m).
This approach will solve O(|LU |) subproblems.

In practice, the time to solve each subproblem grows exponentially with n×m. When
the size of the optimum lattice L̂ is much smaller than |LU |, we will solve many (ex-
pensive) feasible instances before eventually finding the optimum. It is better to use a
binary-search style approach. Of course, in the worst case, we will need to solve prob-
lems for O(log |LU |) different areas; however, when L̂ is small, we will avoid the need
to solve a sequence of large feasible instances.

Pseudo-code for the dichotomic search strategy is given in Figure 8. Note that we
must consider all non-dominated configurations before concluding that there are no
smaller lattices, not just those instances with n×m = mid.

Example 4.3. Consider a circuit with a minimal lattice of size (2× 8). Starting with
max = 34, we initially pick mid = 17. The only configurations with n × m = 17 are
(1, 17) and (17, 1). Both of these configurations may be infeasible, despite the existence
of a smaller feasible configuration.

5. EXPERIMENTAL RESULTS

We have computed minimal lattices for the circuits used by Altun and Riedel [2012], to
test our method and to see how close the DP construction gets to finding the minimum.
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Circuit |V |
bounds optimal restricted

DP C lb dim time dim time

alu1 00 4 (2x3) (2x5) 6 (2x3) 0.19 (2x3) 0.22
alu1 01 4 (3x2) (3x3) 6 (3x2) 0.18 (3x2) 0.22
alu1 02 3 (3x1) (3x1) 3 (3x1) 0.09 (3x1) 0.11
b12 00 6 (6x4) (4x7) 9 (4x3) 1.16 (4x3) 0.80
b12 01 7 (5x7) (4x13) 12 (4x4) 5.37 (4x4) 0.96
b12 02 8 (6x7) (5x13) 12 (4x4) 18.01 (5x4) 1.90
b12 03 4 (2x4) (2x7) 4 (3x2) 0.18 (3x2) 0.24
b12 04 5 (2x4) (2x7) 8 (2x4) 0.30 (2x4) 0.31
b12 05 5 (1x5) (1x9) 5 (1x5) 0.20 (1x5) 0.25
b12 06 9 (6x9) (6x17) 12 (5x4) 238.88 (5x4) 2.89
b12 07 7 (4x6) (4x11) 15 (3x6) 3.88 (4x5) 1.86
b12 08 8 (2x7) (2x13) 14 (2x7) 3.70 (2x7) 0.88
c17 00 4 (3x3) (2x5) 6 (2x3) 0.22 (2x3) 0.32
c17 01 4 (2x4) (2x7) 4 (3x2) 0.18 (3x2) 0.23
clpl 00 7 (4x4) (4x7) 12 (3x4) 1.42 (3x4) 0.64
clpl 01 5 (3x3) (3x5) 9 (3x3) 0.46 (3x3) 0.51
clpl 02 3 (2x2) (2x3) 4 (2x2) 0.10 (2x2) 0.15
clpl 03 11 (6x6) (6x11) 15 (3x6) 99.91 (3x6) 1.71
clpl 04 9 (5x5) (5x9) 12 (3x5) 13.94 (3x5) 0.97

Table I: Results on a set of circuit synthesis benchmarks

Experiments were performed on a 3.4GHz Intel Core i7 with 8Gb RAM running
Ubuntu 12.04. The circuits were converted into SAT, and solved with plingeling, the
parallel version of lingeling [Biere 2013], running on 4 cores. Experiments were per-
formed with a 4 hour time limit.

Results are given in Tables I and II. All times are given in seconds. Instances which
failed to terminate within 4 hours are denoted by ‘—’. DP denotes the upper bound com-
puted using the dual-product construction, and C is the upper bound computed with
the composition approach, inserting false (0) columns between product columns as in
Figure 5(b). lb denotes the lower bound computed by Altun and Riedel [2012]. optimal
gives the running time and the minimal lattice given by the SAT model described in
Section 4.1. The SAT model successfully found the minimal layout (and proved opti-
mality) for all but one instance (mp2d 02) in under 4 hours. For this set of benchmarks,
the optimal lattices appear to be much smaller than the ISOP-based construction. re-
stricted gives results using the restricted model described in Section 4.2. The minimal
lattice size for the restricted formulation is typically quite close to that for the full
formulation. Interestingly, while the restricted formulation is much faster on some
moderate instances, this is not consistently the case; indeed, the restricted approach
failed to solve 3 instances that were successfully solved by the optimal.

Instances in Table III illustrate the worst-case behaviour of the DP approach. An
instance (t, c, s) is a disjunction of t terms, each of cardinality c, with s terms in common
between each adjacent pair. Instance (3, 3, 1), for example, is the function (x1∧x2∧x3)∨
(x3∧x4∧x5)∨(x5∧x6∧x7). We can see that the size of the DP construction grows rapidly
as either the number of terms or cardinality increases, whereas the lattice constructed
by the composition method grows only polynomially with the input size.

The script is available at http://people.eng.unimelb.edu.au/gkgange/synth
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Circuit |V |
bounds optimal restricted

DP C lb dim time dim time

dc1 00 4 (4x4) (3x7) 9 (3x3) 0.44 (3x3) 0.50
dc1 01 4 (3x2) (3x3) 6 (3x2) 0.19 (3x2) 0.23
dc1 02 4 (4x4) (3x7) 12 (3x4) 0.48 (3x4) 0.57
dc1 03 4 (5x4) (4x7) 9 (4x3) 0.45 (4x3) 0.47
dc1 04 4 (3x3) (2x5) 6 (2x3) 0.22 (2x3) 0.27
misex1 00 4 (5x2) (4x3) 6 (4x2) 0.29 (4x2) 0.33
misex1 01 6 (7x5) (4x9) 12 (3x5) 2.05 (4x4) 0.98
misex1 02 7 (8x5) (5x9) 12 (5x4) 21.86 (5x4) 2.45
misex1 03 7 (7x4) (5x7) 9 (4x3) 1.43 (5x3) 0.81
misex1 04 4 (5x5) (4x9) 12 (3x4) 0.51 (3x5) 0.89
misex1 05 6 (7x6) (4x11) 12 (4x4) 3.16 (5x4) 2.05
misex1 06 6 (7x5) (4x9) 9 (5x3) 2.24 (5x3) 0.98
mp2d 00 11 (1x11) (1x21) 11 (1x11) 1111.86 (1x11) 9.64
mp2d 01 10 (7x8) (5x15) 20 (3x9) 7279.19 (4x7) 64.93
mp2d 02 11 (5x10) (4x19) 24 (6x6) — (5x10) —
mp2d 03 10 (19x5) (8x9) 15 (4x6) 1508.76 (5x5) 28.76
mp2d 04 10 (11x6) (9x11) 15 (7x3) 4635.74 (7x3) 31.63
mp2d 05 5 (5x1) (5x1) 5 (5x1) 0.21 (5x1) 0.24
mp2d 06 5 (8x3) (5x5) 8 (4x3) 0.83 (7x2) 0.74
mp2d 07 8 (8x1) (8x1) 8 (8x1) 1.18 (8x1) 0.48
mp2d 08 5 (1x5) (1x9) 5 (1x5) 0.20 (1x5) 0.23
newapla2 00 6 (6x1) (6x1) 6 (6x1) 0.27 (6x1) 0.28
newbyte 00 5 (5x1) (5x1) 5 (5x1) 0.21 (5x1) 0.26
newtag 00 8 (4x8) (3x15) 15 (3x6) 9.47 (3x6) 1.38
ex5 00 3 (3x1) (3x1) 3 (3x1) 0.08 (3x1) 0.10
ex5 01 5 (5x1) (5x1) 5 (5x1) 0.22 (5x1) 0.25
ex5 02 4 (4x1) (4x1) 4 (4x1) 0.11 (4x1) 0.14
ex5 03 7 (7x1) (7x1) 7 (7x1) 0.63 (7x1) 0.39
ex5 04 8 (8x1) (8x1) 8 (8x1) 1.22 (8x1) 0.48
ex5 05 6 (6x1) (6x1) 6 (6x1) 0.28 (6x1) 0.26
ex5 06 7 (4x8) (3x15) 15 (3x6) 5.61 (3x7) 3.87
ex5 07 8 (4x10) (3x19) 20 (4x6) 210.94 (3x9) 1169.00
ex5 08 8 (3x7) (3x13) 18 (3x7) 12.63 (3x7) 3.66
ex5 09 8 (4x10) (4x19) 20 (4x6) 40.21 (3x8) 28.63
ex5 10 6 (3x7) (3x13) 15 (3x6) 2.13 (3x6) 1.35
ex5 11 8 (2x8) (2x15) 16 (2x8) 5.54 (2x8) 1.21
ex5 12 8 (3x9) (3x17) 12 (3x5) 6.12 (3x5) 0.99
ex5 13 8 (4x9) (3x17) 20 (4x6) 24.40 (3x8) 22.83
ex5 14 8 (2x8) (2x15) 14 (2x8) 5.50 (2x8) 1.18
ex5 15 8 (6x12) (4x23) 18 (3x8) 4697.57 (6x12) —
ex5 16 5 (2x5) (2x9) 10 (2x5) 0.50 (2x5) 0.59
ex5 17 8 (9x14) (4x27) 18 (3x9) 14199.63 (9x6) —
ex5 18 7 (2x7) (2x13) 14 (2x7) 1.97 (2x7) 0.91
ex5 19 8 (3x6) (3x11) 15 (3x6) 7.49 (3x6) 1.52
ex5 20 7 (2x6) (2x11) 12 (2x6) 1.30 (2x6) 0.69
ex5 21 8 (7x10) (3x19) 18 (3x7) 20.23 (4x7) 1726.31
ex5 22 7 (6x6) (3x11) 15 (3x6) 5.58 (3x6) 1.37
ex5 23 8 (10x12) (4x23) 20 (3x9) 9171.67 (3x10) 4507.30
ex5 24 8 (8x14) (5x27) 18 (3x8) 1209.65 (8x7) —
ex5 25 8 (5x8) (3x15) 18 (3x7) 18.32 (3x7) 9.03
ex5 26 8 (8x10) (3x19) 18 (3x7) 17.80 (3x9) 272.40
ex5 27 8 (7x11) (4x21) 18 (3x8) 4952.00 (3x8) 50.41
ex5 28 8 (3x9) (3x17) 20 (4x6) 26.75 (3x8) 23.48
Total 2077 2643 834 1711 1829

Table II: Results on a set of circuit synthesis benchmarks—continued
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Circuit |V |
bounds optimal restricted

DP C lb dim time dim time

(2, 6, 0) 12 (36x2) (6x3) 9 (6x3) 7076.22 (6x3) 119.40
(3, 3, 0) 9 (27x3) (3x5) 9 (3x5) 20.27 (3x5) 1.55
(3, 3, 1) 7 (9x3) (3x5) 9 (4x3) 1.36 (4x3) 0.45
(3, 3, 2) 5 (4x3) (3x5) 6 (3x2) 0.08 (3x2) 0.22
(3, 4, 0) 12 (64x3) (4x5) 9 (4x5) — (4x5) 27.48
(3, 4, 1) 10 (25x3) (4x5) 9 (4x5) 4186.20 (4x5) 26.47
(3, 4, 2) 8 (12x3) (4x5) 6 (6x2) 8.37 (6x2) 0.82
(3, 5, 0) 15 (125x3) (5x5) 9 (5x5) — (5x5) 12408.54
(3, 5, 1) 13 (57x3) (5x5) 9 (5x5) — (5x5) —
(3, 5, 2) 11 (25x3) (5x5) 9 (5x4) 6530.91 (5x4) 25.93
(4, 3, 0) 12 (81x4) (3x7) 12 (3x7) — (4x5) 58.52
(4, 3, 1) 9 (17x4) (3x7) 12 (3x5) 24.26 (3x5) 1.36
(4, 3, 2) 6 (6x4) (3x7) 6 (4x2) 0.42 (4x2) 0.28
(4, 4, 0) 16 (256x4) (4x7) 12 (4x7) — (4x7) 1787.58
(4, 4, 1) 13 (64x4) (4x7) 12 (4x7) — (5x5) 858.35
(4, 4, 2) 10 (28x4) (4x7) 9 (3x6) 2052.07 (3x6) 350.54
(6, 2, 0) 12 (64x6) (2x11) 12 (2x6) 71.92 (2x6) 2.30

Table III: Results on instances consisting of sums of disjoint products. An instance
(t, c, s) consists of t terms of cardinality c, with s literals shared between each pair of
adjacent terms.

6. CONCLUSION

Logic synthesis problems often give rise to a range of combinatorial problems. The
performance and flexibility of modern SAT solvers make them a popular tool for pur-
suing a wide range of synthesis tasks. They have been applied to traditional prob-
lems of synthesis [Gu and Puri 1995; Hu et al. 2007] and functional dependency [Lee
et al. 2007; Backes and Riedel 2012], as well as to synthesis problems arising from
emerging technologies such as quantum circuits [Große et al. 2007] and microfluidic
biochips [Keszocze et al. 2014], amongst others.

This paper continues that line of work. We have shown how to efficiently construct
so-called switching lattices, for arbitrary Boolean formulas, with the lattice size being
polynomial in the size of the input formula. We have also shown how to synthesize
optimal switching lattices using SAT solving on a carefully chosen formulation of the
synthesis problem. Our method is an anytime algorithm: stopped prematurely it will
deliver a correct (albeit not necessarily minimal) switching lattice. While the problem
is clearly challenging, our synthesis method generates considerably smaller lattices
than previous approaches.
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