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Abstract
We consider a system of three particles, either three identical bosons or two identical fermions
plus an impurity, within a three-dimensional isotropic trap interacting via a contact interaction.
Using two approaches, one using an infinite sum of basis states for the wavefunction and the
other a closed form wavefunction, we calculate the allowable energy eigenstates of the system
as a function of the interaction strength, including the strongly and weakly interacting limits.
For the fermionic case this is done while maintaining generality regarding particle masses. We
find that the two methods of calculating the spectrum are in excellent agreement in the strongly
interacting limit. However the infinite sum approach is unable to uniquely specify the energy of
Efimov states, but in the strongly interacting limit there is, to a high degree of accuracy, a
correspondence between the three-body parameter required by the boundary condition of the
closed form approach and the summation truncation order required by the summation approach.
This specification of the energies and wavefunctions forms the basis with which thermodynamic
variables such as the virial coefficients or Tan contacts, or dynamic phenomena like quench
dynamics can be calculated.

Keywords: Efimov, interacting, bosons, mass-imbalanced, few-body system

(Some figures may appear in colour only in the online journal)

1. Introduction

Ultracold quantum gases provide an ideal testbed for the
investigation of many-body quantum systems. The founda-
tion of such studies is the investigation of the properties of
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few-body systems [1–11]. Through solutions of the few-body
problem it is possible to calculate the thermodynamics of
many-body quantum gases [6, 12–23] and the quench dynam-
ics of few-body systems [24–35]. Significant research has been
undertaken [14, 36–41] into the study of the interacting three-
body problem for both Bose and Fermi gases. Such work has
lead to our understanding of Efimov states [38, 42–48] in Bose
and mass-imbalanced Fermi systems.

More specifically, recent theoretical results in quench
dynamics allow for the semi-analytic calculation of quench
observables in the three-body system for a quench in s-wave
scattering length [49, 50]. However only the non-interacting
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to unitary and vice-versa quenches can be considered, unlike
the two-body quench where any quench in s-wave scattering
length can be considered [51]. Generalising the three-body
quench quench calculation to arbitrary scattering lengths is
then of great interest and the first step towards that is calculat-
ing the energy spectrum. This has already been done for equal
mass fermions [13] and here we extend those calculations to
the bosonic and mass-imbalanced fermionic cases. In addition
to the relevance to quench dynamics this generalisation also
allows for the calculation of thermodynamic quantities such
as virial coefficients or the Tan contacts [52–54].

In this work we consider two three-body systems: (a) a
2 + 1 fermion system, with mass imbalance between two
substrate particles and an impurity particle and (ib) three
identical bosons. In each case the particles interact via a con-
tact interaction and are confined to a spherically symmetric
harmonic trap. In section 2.1 we extend a previously known
matrix approach [12] for mass-balanced fermions to bosons
and mass-imbalanced fermions. In section 2.2 we similarly
extend closed form solutions [55] for the unitary (strongly
interacting) and non-interacting regimes to mass-imbalance.
In both cases we find and characterise Efimov states and in
section 2.3 we discuss these states in depth and revisit the
three-body parameter description of Efimov states [38]. Spe-
cifically we find a connection between the numeric matrix
approach and the three-body parameter approaches in determ-
ining that for a given matrix size there is a value of the three-
body parameter which produces, to a high degree of accuracy,
the same Efimov energy spectrum at unitarity.

2. Overview of the three-body problem

We consider a system of three interacting particles with arbit-
rary masses in a three dimensional spherically symmetric har-
monic trap. The positions of the three particles are given r⃗1, r⃗2,
and r⃗3 with respective masses m1, m2, and m3. The Hamilto-
nian is given by:

Ĥ3b =
3∑

k=1

− ℏ2

2mk
∇2
k +

mkω
2r2k

2
, (1)

and the interparticle interactions are modelled as contact inter-
actions enforced by the Bethe-Peierls boundary condition
[56]. For convenience we define the following coordinate
transformations,

C⃗ =
m1⃗r1 +m2⃗r2 +m3⃗r3
m1 +m2 +m3

, (2)

r⃗ = r⃗2 − r⃗1, (3)

ρ⃗ =
1
γ

(⃗
r3 −

m1⃗r1 +m2⃗r2
m1 +m2

)
, (4)

γ =

√
m1(m1 +m2 +m3)

(m1 +m2)(m1 +m3)
.

We can then rewrite the Hamiltonian as:

Ĥ3b = ĤCOM + Ĥrel, (5)

ĤCOM = − ℏ2

2M
∇2
C+

Mω2C2

2
, (6)

Ĥrel = − ℏ2

2µ12
∇2
r +

µ12ω
2r2

2
− ℏ2

2µ13
∇2

ρ +
µ13ω

2ρ2

2
, (7)

where µjk = mjmk/(mj+mk) and M = m1 +m2 +m3. ĤCOM

is the centre-of-mass (COM) part of the Hamiltonian, the
solution to which is the simple harmonic oscillator (SHO)
wavefunction, with mass M. Ĥrel is the relative part of the
Hamiltonian.

Throughout the rest of this paper we consider two specific
cases. The first is two identical substrate fermions interacting
with a third impurity particle. For this case we set m1 = mi

and m2 = m3 = m, such that µ13 = µ12 = µ = mim/(mi+
m). The second case we consider is three identical inter-
acting bosons. In this case m1 = m2 = m3 = m and µ13 =
µ12 = m/2. For convenience we can in general define µ =
mim/(mi+m) where mi = m for the bosonic case. Finally we
also define the COM harmonic length scale to be aCOM =√
ℏ/(mi + 2m)ω, and the relative harmonic length scale to be

aµ =
√
ℏ/µω, where for bosons mi = m.

For the fermionic case we investigate the effects of mass
imbalance and so we define κ = m/mi. The effects of chan-
ging κ are investigated in detail in sections 2.1 and 2.2. It
should be noted that as the value of κ changes so too does
aµ. Due to the dependence of aµ on κ we use am/as for κ ⩽ 1
and ami/as for κ ⩾ 1 in figures 1–3 where am =

√
ℏ/mω and

ami =
√
ℏ/miω.

In a non-interacting system equations (6) and (7) can be
solved with SHO wavefunctions. However, we impose the
Bethe-Peierls boundary condition [56] to enforce a contact
interaction,

lim
rij→0

[
d(rijΨ3b)

drij

1
rijΨ3b

]
=

−1
as
. (8)

Here Ψ3b is the total three-body wavefunction, rij = |⃗ri− r⃗j|,
and as is the s-wave scattering length. The COM part of
the wavefunction is independent of the boundary condition,
and only the relative wavefunction is affected. Enforcing this
boundary condition is equivalent to including a Fermi pseudo-
potential term in the Hamiltonian [57].

If the wavefunction is symmetric under the interchange of
particles j and k and satisfies the Bethe-Peierls boundary con-
dition for rij then it satisfies the Bethe-Peierls boundary condi-
tion for rik. This relationship between particle interaction and
particle symmetry allows us to consider the 2+ 1 fermion and
three boson cases while specifying only one scattering length.
Other cases require additional boundary conditions and are
beyond the scope of this work. For example in the 2+ 1 boson
case the scattering length between the two identical bosons
is not necessarily the same as between one of those bosons
and the third particle, both scattering lengths would need to be
specified.
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2.1. General interaction strength

By expressing the relative wavefunction as an expansion over
basis states it is possible to obtain the allowable energy states
for any value of as via a matrix eigenvalue problem [4, 12, 13].
Due to the separability of the COM and relative Hamiltonians
the total three-body wavefunction may be written:

Ψ3b(C⃗, r⃗, ρ⃗) = χCOM(C⃗)ψ
rel
3b (⃗r, ρ⃗). (9)

The COM wavefunction, χCOM(C⃗), is a SHO wavefunction of
length scale aCOM. The relative wavefunction, ψrel

3b (⃗r, ρ⃗), can
be written:

ψrel
3b (⃗r, ρ⃗) = (1+ Q̂)

∞∑
n=0

Cnψ
rel
2b

(
νnl,

r
aµ

)
Rnl

(
ρ

aµ

)
Ylm(ρ̂),

(10)

where ψrel
2b is the relative interacting two-body wavefunctions,

first derived by [1], and νnl are the energy pseudo-quantum
numbers. Rnl is the normalisation and radial part of the three
dimensional SHO wavefunction and Y lm is the spherical har-
monic. Q̂ is the symmetrisation operator, it ensures the cor-
rect bosonic or fermionic symmetry of the wavefunction. For
three identical bosons Q̂= P̂13 + P̂23, for two identical fermi-
ons and one distinct particle Q̂=−P̂23, where P̂jk exchanges
the location of particles j and k. The Cn terms are coefficients
of expansion.

The energy of ψrel
3b is given by:

Erel = (2νnl+ 2n+ l+ 3)ℏω, (11)

where νnl + n is constant so that the energy of each term in
equation (10) is the same.

The explicit form of the relative two-body wavefunction
is [1]:

ψrel
2b (νnl, r̃) = Nνnle

−r̃2/2Γ(−νnl)U
(
−νnl,

3
2
, r̃2
)
, (12)

Nνnl =

√
νnlΓ(−νnl− 1/2)

2π2a3µΓ(1− νnl)[ψ(0)(−νnl− 1/2)−ψ(0)(−νnl)]
,

where U is Kummer’s function, r̃= r/aµ and ψ(0) is the
digamma function of degree 0. The explicit form of Rnl is
given by:

Rnl (ρ̃) = Nnl (ρ̃)
l e−ρ̃2/2L

l+ 1
2

n
(
ρ̃2
)
, (13)

Nnl =

√√√√√ 1
4πa6µ

2n+l+3n!
(2n+ 2l+ 1)!!

,

where L
l+ 1

2
n is the associated Laguerre polynomial, and

ρ̃= ρ/aµ. The exchange operators are given by:

P̂23 f(C⃗, r⃗, ρ⃗)

= f

(
C⃗,

m⃗r
m+mi

+ γρ⃗,
(2m+mi)mi⃗r
(m+mi)2γ

− mρ⃗
m+mi

)
, (14)

where m= m2 = m3, m1 = mi and:

P̂13 f(C⃗, r⃗, ρ⃗)

= f

(
C⃗,

mi⃗r
m+mi

− γρ⃗,
−(2m+mi)mi⃗r
(m+mi)2γ

− mρ⃗
m+mi

)
,

(15)

where m = m1 = m3, mi = m2. In this paper P̂13 is
only applicable to the bosonic case where m1 = m2 =
m3 = mi = m.

As per [12, 13] the allowable values of the scattering
length and expansion coefficients for a chosen energy (and
thus chosen νnl) can be determined from the following mat-
rix equation,

aµ
as

C0

C1
...

 =

X00l X01l X02l . . .
X10l X11l X12l . . .
...

...
...

. . .


C0

C1
...

 , (16)

where:

Xn ′nl =
2Γ(−νn ′l)

Γ(−νn ′l− 1
2 )
δn ′n− η

(−1)l√
π
An ′nl, (17)

and:

An ′nl =
a3µ
Nνnl

ˆ ∞

0
ρ̃2Rn ′l(ρ̃)Rnl

(
κρ̃

1+κ

)
×ψrel

2b

(
νnl,

√
2κ+ 1
(1+κ)2

ρ̃

)
dρ̃, (18)

and η = −1 or η = 2 for the fermionic and bosonic cases
respectively. With equations (16)–(18) the energy spectrum of
the relative three-body wavefunction can be calculated for any
desired value of κ.

Additionally in the κ→ 0 limit (the heavy-impurity limit)
the matrix elements can be determined analytically:

An ′n,l =


2

n ′ − ν

√
Γ(n+ 3/2)Γ(n ′ + 3/2)
πΓ(n+ 1)Γ(n ′ + 1)

l= 0

0 l> 0

.

(19)

However in the heavy substrate limit, κ→∞, equation (18)
diverges due to ψrel

2b (ν,r) diverging as r→ 0. It should be
noted that the κ→∞ limit can be evaluated using the Born–
Oppenheimer approximation [58].

In practice equation (16) must be truncated to some finite
N × N matrix. In figures 1–3 we plot the three-body energy
spectra for N = 50, most states converge very quickly as N
increases (effectively converged by N= 5) with the exception
of Efimov states. These states and their behaviour is discussed
in more detail in section 2.3.

The three-body energy spectrum is given in figures 1–3. In
figure 1 we present the fermionic energy spectrum for κ→ 0
with l= 0, for comparison, we also show our results for κ = 1,
which reproduce the results of [12, 13]. In figure 2 we present

3
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Figure 1. Energy spectra of the fermionic three-body relative
wavefunction, equation (10), for l = 0 calculated using
equation (16) with a 50 × 50 matrix. Blue dots correspond to κ = 1
and red upright triangles to the κ→ 0 limit. The magenta pluses are
the unitary energies for κ = 1 and the cyan crosses for κ→ 0, as
per the calculations in section 2.2. The solid horizontal black lines
correspond to the non-interacting energies and the solid vertical
black line is simply to indicate unitarity.

Figure 2. Energy spectra of the bosonic three-body relative
wavefunction, equation (10), calculated using equation (16) with a
50 × 50 matrix. Blue dots correspond to l = 0 and green inverted
triangles to l= 1. The black pluses are the unitary energies for l= 0
and the orange crosses for l = 1, as per the calculations in
section 2.2. Some l = 0 unitary energies are unlabelled by a black
plus and these correspond to Efimov states as described in
section 2.3. The solid horizontal black lines correspond to the
non-interacting energies of the l = 0 state and the dashed horizontal
black lines to the l = 1 state. The solid vertical black line is simply
to indicate unitarity.

the bosonic energy spectrum for l = 0 and l = 1, recall κ = 1
for three identical bosons. In figure 3 we present the fermi-
onic energy spectrum for κ = 1 and κ = 13.75 with l = 1. In
all figures the horizontal black lines define the non-interacting
energies and the vertical black lines are simply to indicate
unitarity (as →∞).

In figure 1 we observe for κ= 1 and a−1
s > 0 sharp and

close anticrossings are present which make it difficult to
clearly identify which unitary states ultimately diverge and
which converge as a−1

s →+∞. However in the κ→ 0 limit
these anticrossings disappear. This makes the identification of
which states are ultimately divergent and convergent much
more reliable. Notice that for every unitary energy there is
one divergent state and the multiplicity at unitarity increases
by one every 4ℏω. This is consistent with equation (33) in

Figure 3. Energy spectra of the fermionic three-body relative
wavefunction, equation (10), for l = 1 calculated using
equation (16) with a 50 × 50 matrix. Blue dots correspond to κ = 1
and red upright triangles to κ = 13.75. The magenta pluses are the
unitary energies for κ = 1 and the cyan crosses for κ = 13.75, as
per the calculations in section 2.2. Some κ = 13.75 unitary energies
are unlabelled by a cyan cross and these correspond to Efimov states
as described in section 2.3. The solid horizontal black lines
correspond to the non-interacting energies and the solid vertical
black line is simply to indicate unitarity.

section 2.2 and implies that the s00 states (see section 2.2), and
only the s00 states, are divergent as as →+0. This is similar to
findings of [13] for the κ = 1 case where the sn=0,l states are
identified as the divergent states.

In figure 2, the bosonic case, we observe many of the same
features as the fermionic spectra in figure 1. Again all states
converge to non-interacting energies for a−1

s →−∞ but for
a−1
s →+∞ there are both divergent and convergent states,

additionally anticrossings are present. For l= 0 we are able
to identify the s10 states as being divergent in the a−1

s →+∞,
however, unlike the l = 0 fermion spectra discussed above,
these are not the only divergent states, all Efimov states (dis-
cussed in section 2.3) are divergent in the a−1

s →+∞ limit.
For l= 1, anticrossings are still present but fewer in num-
ber and narrower. The lowest sn=0,l states being divergent no
longer appears to be true, the (q,s11) = (0,6.462 . . .) state is
divergent and the (q,s01) = (2,2.864 . . .) state is not divergent.

In figure 3 for κ= 13.75 we again observe anticrossings
and that the states corresponding to the smallest real value of
snl diverge as a−1

s →+∞. However, unlike the bosonic case
some, but curiously not all, Efimov states diverge as a−1

s →
+∞. Only the lowest three Efimov energies are divergent in
this limit.

2.2. Hyperspherical approach

In section 2.1 we have derived the three-body relative wave-
function for general s-wave scattering length, as, and general
mass ratio, κ, in the form of an infinite sum, equation (10).
However, it is possible to derive a closed form eigenfunc-
tion of Ĥrel using hyperspherical coordinates [3, 55]. Only in
the unitary and non-interacting cases can the wavefunction be
fully specified. Enforcing the Bethe-Peierls boundary condi-
tion leads to a transcendental equation that can be solved for
one of the quantum numbers, snl, in the non-interacting and
unitary regimes.
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We define the hyperradius, R, and the hyperangle, α,

R =
√
r2 + ρ2, α= arctan

(
r
ρ

)
. (20)

In turn the relative Hamiltonian is given by:

Ĥrel =
−ℏ2

2µ

[
∂2

∂R2
+

5
R
∂

∂R
+

4
R2

+
1

R2 sin2(α)cos2(α)

∂2

∂α2

(
cos(α)sin(α)•

)
−

Λ̂2
ρ

R2 cos2(α)
− Λ̂2

r

R2 sin2(α)

]
+
µω2R2

2
, (21)

where Λ̂2
ρ and Λ̂

2
r are the angular part of the three-dimensional

Laplace operators acting on the ρ̂ and r̂ coordinate spaces
respectively. In the unitary and non-interacting limits we can
express the wavefunction in closed form. The unnormalised
wavefunction is of the form:

ψrel
3b =

a2µ
R2
Fqsnl(R)(1+ Q̂)

φlsnl(α)

sin(2α)
Ylm(ρ̂). (22)

Here q, l and snl are quantum numbers and give the energy:

Erel = (2q+ l+ snl+ 1)ℏω. (23)

While q and l are non-negative integers the snl quantum num-
ber is more complicated. Following the work of [3, 13] several
conditions can be placed on the wavefunction:

φlsnl

(π
2

)
= 0, (24)

s2φlsnl(α) = −φ ′ ′
lsnl(α)+

l(l+ 1)
cos2(α)

φlsnl(α), (25)

ErelFqsnl(R) =
−ℏ2

2µ

(
F ′ ′
qsnl(R) +

F ′
qsnl(R)

R

)
+

(
ℏ2s2nl
2µR2

+
µω2R2

2

)
Fqsnl(R). (26)

The first is enforced because a divergence at α = π/2 is
non-physical, the second and third come from requiring that
equation (22) is an eigenfunction of equation (21). These con-
ditions determine the functional form of thewavefunction. The
hyperspherical solutions are given [13]:

φlsnl(α)

= cosl+1(α)2F1

(
l+ 1− snl

2
,
l+ 1+ snl

2
; l+

3
2
;cos2(α)

)
,

(27)

Fqsnl(R) =

(
R
aµ

)snl

e−R2/2a2µLsnlq

(
R2

a2µ

)
, (28)

where 2F1 is the Gaussian hypergeometric function. This solu-
tion for Fqsnl(R) is valid for s2nl ⩾ 0. For s2nl < 0 there is a dif-
ferent solution, see section 2.3. Note that some values of snl

Table 1. Three-body wavefunction eigenvalues, snl, at unitarity for
the bosonic case and the fermionic case with κ = 1 and κ = 13.75,
to three decimal places.

3 bosons 2+ 1 fermions κ = 1 κ = 13.75

l n snl

0 0 i · 1.006 . . . 2.166. . . 3.538. . .
1 4.465. . . 5.127. . . 4.802. . .
2 6.818. . . 7.114. . . 6.715. . .
3 9.324. . . 8.832. . . 10.912. . .

1 0 2.863. . . 1.77. . . i · 0.165 . . .
1 6.462. . . 4.358. . . 3.940. . .
2 7.852. . . 5.716. . . 6.132. . .
3 9.822. . . 8.053. . . 8.211. . .

2 0 2.823. . . 3.104. . . 3.853. . .
1 5.508. . . 4.795. . . 4.965. . .
2 6.449. . . 7.238. . . 6.707. . .
3 9.272. . . 8.837. . . 8.782. . .

3 0 4.090. . . 3.959. . . 3.383. . .
1 5.771. . . 6.127. . . 6.062. . .
2 8.406. . . 7.816. . . 8.196. . .
3 9.607. . . 10.172. . . 10.200. . .

and l are forbidden and are not predicted by the method of
section 2.1; l= 0, s= 2 for fermions and, l = 1, s = 3 and
l = 0, s = 4 for bosons are forbidden because the wavefunc-
tions are 0 [55].

The interactions are enforced by the Bethe-Peierls bound-
ary condition, equation (8), and this allows for the values of
snl to be calculated, but only in the non-interacting and unit-
ary regimes. In the intermediate regime this formalism breaks
down. Note in equation (26) s2nl appears not snl. Hence there is a
degree of arbitrarity in snl, convention is to choose snl ∈ [0,∞)
for s2nl ⩾ 0 and snl ∈ i · [0,∞) for s2nl < 0. The s2nl < 0 case will
be considered in more detail in section 2.3.

In the non-interacting case equation (8) implies φlsnl(0) =
0, and so the values of snl are given [13]:

NI fermions snl =

{
2n+ 4 l= 0

2n+ l+ 2 l> 0
, (29)

NI bosons snl =


2 l= 0

2n+ 6 l= 0

2n+ l+ 4 l= 1

2n+ l+ 2 l> 1

, (30)

where n ∈Z⩾0.
In the unitary limit snl will solve the following transcend-

ental equation:

0=
dφlsnl
dα

∣∣∣
α=0

+ η(−1)l
(1+κ)2

κ
√
1+ 2κ

φlsnl

(
arctan

(√
1+ 2κ
κ

))
. (31)

See table 1 for solutions to equation (31).
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In the κ→ 0 limit, with η = −1 (fermions), equation (31)
reduces to:

0=
dφlsnl
dα

∣∣∣
α=0

− δl,0, (32)

in turn this implies, for κ→ 0,

snl =

{
4n+ 2 l= 0

2n+ l+ 1 l> 0
, (33)

where n ∈ Z⩾0. Note l = 0, s = 2 is normally forbidden
but because s→ 2 as κ→ 0 this is never violated for finite
mass imbalance. In the κ→∞ limit the right-hand term in
equation (31) diverges unless snl takes specific values that
cause theφlsnl part of the term to be 0. This implies, for κ→∞

snl =

{
2n+ 4 l= 0

2n+ l+ 2 l> 0
, (34)

where n ∈Z⩾0.
The energies at unitarity are plotted in figures 1–3. In

figure 1 the purple pluses indicate unitary energies for the
κ= 1 case and the cyan crosses for the κ→ 0 case. In figure 2
the black pluses indicate the unitary energies for l = 0 and the
orange crosses for l = 1. In figure 3 the purple pluses indicate
unitary energies for the κ = 1 case and the cyan crosses for
κ = 13.75.

The energies calculated using the general method of
section 2.1 are in excellent agreement with the hyperspherical
approach of this section. However, as noted in the captions of
figures 2 and 3, some states are not marked at unitarity with
an energy from a hyperspherical calculation. These states are
Efimov states and they correspond to the case where snl is ima-
ginary. In this case equation (28) is not the correct wavefunc-
tion and soErel = (2q+ snl+ 1)ℏω is not applicable. Note that
snl itself is not an eigenvalue of the Hamiltonian and is allowed
to be imaginary. The quantity of direct relevance is s2nl, and this
is what appears in equations (25) and (26).

2.3. Efimov states

The previous two sections have investigated the agreement
between two different methods of calculating the unitary
energy spectrum of trapped three-body systems including for
bosons and the effects of mass imbalance. We find that the
two methods are in excellent agreement, however, as noted
in figures 2 and 3, there are some unitary energies pre-
dicted by the method of section 2.1 that are not predicted by
equations (23) and (31). These unmarked states, associated
with imaginary values of snl, are Efimov states, e.g. s00 for
bosons and s01 for κ = 13.75 fermions.

Equation (26) is the Schrödinger equation for a particle
moving in a two dimensions with two potential terms, a har-
monic potential and a term proportional to s2nl/R

2. If snl is

Figure 4. The relative change in the energies of the lowest energy
Efimov (blue circles) and lowest energy universal (red crosses)
states calculated as per section 2.1 with increasing matrix size in
equation (16). N is the dimension of the matrix, i.e. the matrix is
N×N, and ∆E= (E−EN=10)/EN=10 is the proportional deviation
away from the N= 10 energy (universal or Efimov as appropriate).
Panel (a) is the bosonic l= 0 case (EN=10 =−0.563ℏω) and the
panel (b) is the fermionic l= 1, κ= 13.75 case (EN=10 = 1.507ℏω).
The horizontal black line defines ∆E = 0.

purely imaginary then this potential is attractive at short dis-
tances rather than repulsive. This necessitates a different class
of solution compared to the case where snl is purely real
and these solutions are Efimov states. Physically speaking the
Efimov effect is short-range interparticle interactions giving
rise to an effective attractive long-range interaction due to a
third particle mediating the effective interaction between the
other two.

These states were first studied in [48] in the free context and
[38] in a trapped context. Efimov states were first observed in
an ultracold gas in [59].

For imaginary snl the hyperradial solution is given by [3]:

Fqsnl(R) =
aµ
R
W Erel

2ℏω
,
snl
2

(
R2

a2µ

)
, (35)

whereWa,b(x) is theWhittaker function. In the universal (s2nl ⩾
0) case equations (26) and (28) imply Erel = (2q+ snl+ 1)ℏω.
However, in the Efimov case the relative energy is left a free
parameter. Using the method of section 2.1 the energies of the
Efimov states do not converge to a constant value as the mat-
rix size is increased, whereas the universal states do converge.
This non-convergence of the Efimov states is shown in figure 4,
where the change in energy,∆E= (E−EN=10)/EN=10 is plot-
ted as a function of the matrix size (N) in equation (16).
Figures 4(a) and (b) plot∆E for bosons and fermions respect-
ively. From these plots it is clear that as N is increased the
energy for the universal states states remains constant, whereas
the Efimov state energies diverge. This divergence arises from
the fact that the Hamiltonian and Bethe-Peierls boundary con-
dition do not contain enough information to uniquely specify
the energies of the Efimov states. We find that the Efimov
energies diverge logarithmically with N. As such an additional
boundary condition is needed to fix the Efimov energies.
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The Efimov hyperradial function, equation (35), oscillates
increasingly rapidly as R/aµ → 0 (but remains bounded). To
find the Efimov states we require the phase of the oscillation
to be fixed, and impose the boundary condition:

Fqsnl(R) =
R→0

Asin
[
|s0l| ln

(
R
aµ

)
− |s0l| ln

(
Rt
aµ

)]
, (36)

where A is a constant and Rt > 0 is the three-body parameter.
The short range behaviour of the Efimov hyperradial wave-
function is given by:

aµ
R
W E
2ℏω

,
s0l
2

(
R2

a2µ

)
=
R→0

Γ[−s0l]

Γ

[
1− s0l−E/ℏω

2

] ( R
aµ

)s0l

+
Γ[s0l]

Γ

[
1+ s0l−E/ℏω

2

] ( R
aµ

)−s0l

.

(37)

From this we can derive a transcendental equation that determ-
ines the energy spectrum as a function of Rt [38] :

−|s0l| ln
(
Rt
aµ

)
= arg


Γ

[
1+ s0l−E

2

]
Γ[1+ s0l]

 mod π.

(38)

The energy spectrum is unbounded from above and below. We
index the states with q ∈ Z, and define the q= 0 state to be the
first positive energy state at Rt/aµ = exp(π/|s0l|) with q> 0
referring to higher energy states and q< 0 to lower energy
states, see figure 5. For example for Rt/aµ = 1 and s0l =
i · 1.006, the energies corresponding to q= 3,2,1,0,−1,−2
are given Erel/ℏω ≈ 6.60,4.48,2.27,−0.85,−566,−291649
respectively and at Rt/aµ = exp(π/|s0l|) the energies cor-
responding to q= 3,2,1,0,−1,−2 are given Erel/ℏω ≈
8.686,6.60,4.48,2.27,−0.85,−566 respectively. In general
the energy of the q=N state at Rt/aµ = exp(π/|s0l|) is equal
to the energy at Rt/aµ = 1 of the q= N+ 1 state. For fixed Rt
the states with q⩾ 0 have a regular spacing of≈ 2ℏω whereas
the spacing of the q< 0 states grows larger for more negative
energies.

Physically speaking the additional parameter Rt is needed
because in the Efimov states the specifics of the interparticle
interaction become significant, due to the attractive s20l/R

2

potential term, and can no longer accurately be considered a
contact interaction. Rt describes the short-range (but not zero-
range) properties of the interparticle interaction and will, in
general, differ for different species of atoms although some
work suggests that it will vary little in units of the van der
Waals length in practice [47].

Efimov states also exist in the fermionic case for sufficient
mass imbalance [42, 44]. By solving equation (31) for κ, with
snl = 0 and η =−1, we find the mass imbalance for which snl
becomes imaginary and Efimov states are then allowed. There
are no Efimov states for l is even. They appear for l= 1,3,5 . . .

Figure 5. The energy spectrum for Efimov states as defined by
equation (38). Calculated using s= i · 1.006. The upper limit on the
horizontal axis is eπ/|s| ≈ 22.7, and the vertical black line is
Rt = aµ.

for κ≳ 13.606 . . . ,75.994 . . . ,187.958 . . . respectively. This is
in good agreement with previous work [44–46, 58]. Using
the method of section 2.1, the Efimov states appear (or do
not appear as appropriate) at these predicted values of l and
κ. Additionally while the real values of snl converge in the
κ→∞ limit the imaginary solutions to equation (31) do not
converge.

As described above; in themethod of section 2.1 the Efimov
energies depend on matrix size and are divergent with increas-
ing matrix size, and in the approach of section 2.2 the Efimov
energies are not fixed so an additional parameter is required.
In fact these two methods, the matrix size and the three-body
parameter, are closely linked; for every finite matrix size there
is a value of Rt that produces the same unitary Efimov energy
spectrum to a high degree of accuracy. This result implies that
the boundary condition equation (36) is enforced by the finite
matrix size of equation (16). The errors between the Efimov
energies calculated with the two methods are given in tables 2
and 3. In tables 2 and 3 the value of Rt is calculated by sub-
stituting the lowest Efimov energy calculated with the matrix
method for a given matrix size N into equation (38), which
corresponds to either q = 0 or q = −1 depending on N and
the particle symmetry. The error between the two methods of
calculating the Efimov energies is ≲1% for all calculated val-
ues and is most likely due to the linear interpolation required to
determine the unitary energies using the method of section 2.1.

However away from unitarity this equivalence no longer
holds. For a general value of as, unlike at unitarity, there is no
value of snl such that there exists a value of Rt that matches the
non-unitary Efimov energy spectrum of section 2.1. Repeat-
ing the above comparison between the Efimov energy spec-
tra (for the same values of snl) for bosons at am/as =−0.25
instead of at unitarity lead to errors of≈2% compared to≲1%
at unitarity. The errors grow as distance from unitarity grows,
with an error of ≈13% at am/as =−5. In the fermionic case
we have similar results with errors increasing as one moves
further from unitarity. The equivalence breaks down in the
intermediate as regime because snl is no longer well defined.
Away from the unitary or non-interacting regimes the left-hand
side of equation (31) depends on ρ and equation (22) cannot
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be used to describe the three-body relative wavefunction. As
equation (38) depends on snl it cannot be used to create an
energy spectrum in the intermediate as regime.

In drawing an equivalence between these two methods of
calculating the unitary Efimov energy spectrum we must note
that the spectrum determined by equation (38) is unboun-
ded above and below whereas the Efimov energy spectrum
defined by equation (16) is unbounded above but not below. In
figures 2 and 3 one can see that the Efimov energies approach
non-interacting energies in the a−1

s →−∞ limit. In order to
preserve the appropriate multiplicity of the non-interacting
eigenstates, the lowest observed energy states must in fact
be the lowest energy states. That being said, the lower ener-
gies predicted by equation (38) are significantly lower, e.g. for
Rt = 11.555 the q=−1 state has E≈−4.164ℏω as per table 2
but for q=−2 we have E≈−566ℏω, and this makes direct
confirmation of the absence of these states in the formulation
of equation (16) numerically challenging.

As N increases all of the the Efimov energies defined by
equation (16) decrease, see tables 2 and 3. The correspondence
between the two methods of calculating the spectra implies
that in the limit of N→∞ the ground state energy approaches
−∞, i.e. that there is no well defined ground state, this is
source of the divergence in figure 4. The lack of a well defined
ground state is a result of the zero-range interaction and is
known as the Thomas collapse, discovered by [60]. With a
finite-range interaction the ground state energy is set by the
interaction range and the Thomas collapse is avoided, see e.g.
[58] for further discussion.

In the hyperspherical formulation equations (27) and (28)
define an orthogonal set of states in both the unitary and non-
interacting regimes. Integrating over the universal hyperra-
dial wavefunction gives an orthogonality in q and integrating
over the hyperangular part gives an orthogonality in snl [61].
The Efimov hyperradial wavefunctions are orthogonal with the
energy spectrum defined by equation (38).

The orthogonality of the Efimov wavefunctions is not
obvious and here we provide a short proof. Consider some
energy E and some other energy E ′ ̸= E both of which satisfy
equation (38) for the same values ofRt and snl = s. The overlap
of two Efimov hyperradial wavefunctions is given by [50, 62]:

⟨Fq ′s|Fqs⟩=
a2µ
2

Γ(s+ 1)Γ(−s)

Γ

(
1−E/ℏω− s

2

)
Γ

(
3−E ′/ℏω+ s

2

) 2F1

×
(
1,

1−E/ℏω+ s
2

;
3−E ′/ℏω+ s

2
;1

)
+
a2µ
2

Γ(1− s)Γ(s)

Γ

(
1−E/ℏω+ s

2

)
Γ

(
3−E ′/ℏω− s

2

) 2F1

×
(
1,

1−E/ℏω− s
2

;
3−E ′/ℏω− s

2
;1

)
, (39)

where Fq ′s has energy E′ and Fqs has energy E. Note the
identity:

Table 2. Comparison of the matrix and three-body parameter
Efimov energies (in units of ℏω) for bosons. The three-body
parameter is found by substituting the lowest unitary Efimov energy
predicted by the matrix method into equation (38). For matrix size
N = 10 this means that the q = 0 state is the corresponding lowest
energy state, and for N ⩾ 20 q = −1 is the corresponding state. All
values are stated to 3 decimal places. Errors are ≲1%, with the
primary source of error being the accurate calculation of the matrix
energies, this also affects the accuracy of Rt as Rt is chosen
depending on the lowest Efimov state energy.

Bosons q = 0 q = 1 q = 2 q = 3 q = 4

N= 10 −0.563 2.393 4.612 6.747 8.849
Rt/aµ = 1.131 −0.563 2.365 4.566 6.682 8.763
Error % 0 1.191 1.000 0.963 0.967

q=−1 q= 0 q= 1 q= 2 q= 3
N= 20 −1.531 2.112 4.353 6.490 8.588
Rt/aµ = 18.216 −1.531 2.094 4.326 6.455 8.544
Error % 0 0.870 0.621 0.543 0.511
N= 30 −2.428 1.943 4.198 6.341 8.441
Rt/aµ = 14.897 −2.428 1.928 4.178 6.315 8.409
Error % 0 0.767 0.494 0.410 0.375
N= 40 −3.301 1.823 4.087 6.234 8.336
Rt/aµ = 12.912 −3.301 1.810 4.070 6.212 8.310
Error % 0 0.709 0.423 0.344 0.310
N= 50 −4.164 1.731 4.001 6.150 8.253
Rt/aµ = 11.555 −4.164 1.719 3.990 6.131 8.231
Error % 0 0.681 0.386 0.303 0.266

2F1(a,b;c;1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, if R(c)> R(a+ b),

(40)

which applies if E ′ < E which we can always set to be
true given that ⟨Fq ′s| Fqs⟩= ⟨Fqs| Fq ′s⟩. Additionally note
Γ(1+ z) = zΓ(z) and that the two terms in equation (39) are
complex conjugates. We then have:〈
Fq ′s(R)

∣∣ Fqs(R)⟩= a2µ

×Re

 2ℏω
s(E ′ −E)

Γ(1− s)

Γ

(
1−E/ℏω− s

2

) Γ(1+ s)

Γ

(
1−E ′/ℏω+ s

2

)
 .

(41)

Note that the second and third terms in equation (41) (or
their complex conjugates) appear in the right-hand side of
equation (38) and therefore have opposite phase (up to modulo
π). We can then write:

Be−iA =
Γ(1− s)

Γ

(
1−E/ℏω− s

2

) , (42)

Cei(A+nπ) =
Γ(1+ s)

Γ

(
1−E ′/ℏω+ s

2

) , (43)

where A,B,C ∈ R and n ∈ Z. As such in equation (41) the
first term in the square brackets is purely imaginary and the
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Table 3. Comparison of the matrix and three-body parameter
Efimov energies (in units of ℏω) for fermions with κ= 13.75 and
l= 1. The three-body parameter is found by substituting the lowest
unitary Efimov energy predicted by the matrix method into
equation (38). All values are stated to 3 decimal places. Errors are
≲1%, with the primary source of error being the accurate
calculation of the matrix energies, this also affects the accuracy of
Rt as Rt is chosen depending on the lowest Efimov state energy.

Fermions q = 0 q = 1 q = 2 q = 3 q = 4

N= 10 1.507 3.626 5.713 7.787 9.857
Rt/aµ = 2.59× 107 1.507 3.611 5.680 7.731 9.773
Error % 0 0.380 0.573 0.721 0.8544
N= 20 1.433 3.525 5.588 7.640 9.685
Rt/aµ = 1.84× 107 1.43 3.51 5.57 7.61 9.65
Error % 0 0.150 0.221 0.272 0.312
N= 30 1.397 3.477 5.531 7.574 9.611
Rt/aµ = 1.50× 107 1.397 3.474 5.524 7.563 9.594
Error % 0 0.085 0.127 0.153 0.178
N= 40 1.374 3.447 5.496 7.535 9.567
Rt/aµ = 1.30× 107 1.374 3.445 5.491 7.526 9.556
Error % 0 0.061 0.087 0.106 0.121
N= 50 1.355 3.425 5.463 7.491 9.515
Rt/aµ = 1.14× 107 1.355 3.421 5.463 7.496 9.523
Error % 0 0.113 0.005 0.063 0.082

product of the second and third terms is purely real, hence
⟨Fq ′s(R)| Fqs(R)⟩= 0. Since E and E′ are only required to be
not equal and satisfy equation (38) for the same Rt and snl we
have that equation (38) produces an orthogonal spectrum of
energies.

The wavefunctions given by equations (10) and (22) both
solve the three-bodyHamiltonian and satisfy the Bethe-Peierls
condition and reproduce the same energy spectrum in the non-
interacting and unitary regimes. These are different represent-
ations of the same wavefunction and as selecting a specific
Rt defines an orthogonal subset of Efimov energies a specific
matrix size also selects an orthogonal subset.

3. Conclusion

In this work we have considered exact solutions for three
particles in a spherically symmetric trap. We have provided
results for both fermionic systems with mass imbalance and
bosonic systems where by definition there is no mass imbal-
ance. In each case these results can be used to investigate
physical phenomena such as quench dynamics [6, 12–21]
and the derivation of the equation of state of such a gas
[24, 26–28].

We have also revisited, for fermions with mass imbal-
ance, and bosons, the Efimov states in such systems. Specific-
ally we have compared solutions with the matrix approach,
section 2.1, and the hyperspherical approach, section 2.2.
We find in each case very good agreement between the two
approaches, at unitarity, for fermions with and without mass
imbalance and for mass-balanced bosons. Finally, we have
investigated, in section 2.3 the emergence of Efimov states
for the mass-imbalanced fermion case and the mass-balanced
boson case. Remarkably we find a connection between the

matrix and three-body parameter approaches in determining
the energy of Efimov states at unitarity. Specifically, for the
matrix approachwe find the energy of an Efimov state diverges
with increasing matrix size, see figure 4. However for every
matrix size there is a value of Rt that produces the same energy
spectrum, see tables 2 and 3.

This parametrisation of the energy spectrum in the inter-
mediate regime lays the groundwork for future calculations
regarding three-body quench dynamics, viral coefficients and
Tan contacts. Three-body quench dynamics calculations can
currently be performed for the non-interacting to unitary
(and vice-versa) quenches using the hyperspherical formalism
[49, 50], but calculations for intermediate quenches are lack-
ing. In this work we have uniquely specified the energies and
wavefunctions in the intermediate regime, the remaining bar-
rier to calculating for an arbitrary quench is the difficulty of
calculating the wavefunction overlaps using equation (10),
correctly accounting for the permutation operator is quite diffi-
cult. However in the hyperspherical formalism, equation (22),
integrating over the terms acted on by the permutation oper-
ator can be done by utilising a ‘kinematic rotation’, a coordin-
ate transform on the hyperangle α which is a function of r
and ρ [2, 57, 61, 63, 64]. It should be possible to modify the
‘kinematic rotation’ technique and, with the wavefunctions
and energies now specified for general as, calculate quench
observables for a general quench between intermediate scat-
tering lengths.
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VI, Paris
[56] Bethe H and Peierls R 1935 Proc. R. Soc. A 148 146
[57] Braaten E and Hammer H-W 2006 Phys. Rep. 428 259
[58] Petrov D S 2012 Many-Body Physics With Ultracold Gases

(Les Houches 2010) (Lecture Notes of the Les Houches
Summer School vol 94) (Oxford: Oxford University Press) p
109

[59] Kraemer T et al 2006 Nature 440 315
[60] Thomas L H 1935 Phys. Rev. 47 903
[61] Fedorov D and Jensen A 1993 Phys. Rev. Lett. 71 4103
[62] Gradshteyn I S and Ryzhik I M 2014 Table of Integrals, Series

and Products (New York: Academic)
[63] Nielsen E, Fedorov D V, Jensen A S and Garrido E 2001 Phys.

Rep. 347 373
[64] Thøgersen M 2009 Universality in ultra-cold few-and

many-boson systems PhD Thesis Arhus University,
Denmark

10

https://doi.org/10.1088/0034-4885/75/4/046401
https://doi.org/10.1088/0034-4885/75/4/046401
https://arxiv.org/abs/physics/9905051
https://doi.org/10.1103/PhysRevA.82.022706
https://doi.org/10.1103/PhysRevA.82.022706
https://doi.org/10.1007/s00601-011-0237-6
https://doi.org/10.1007/s00601-011-0237-6
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevA.82.023619
https://doi.org/10.1103/PhysRevA.82.023619
https://doi.org/10.1007/s00601-011-0298-6
https://doi.org/10.1007/s00601-011-0298-6
https://doi.org/10.1103/PhysRevLett.96.030401
https://doi.org/10.1103/PhysRevLett.96.030401
https://doi.org/10.1103/PhysRevA.85.033634
https://doi.org/10.1103/PhysRevA.85.033634
https://doi.org/10.1103/PhysRevLett.107.030601
https://doi.org/10.1103/PhysRevLett.107.030601
https://doi.org/10.1103/PhysRevA.85.053636
https://doi.org/10.1103/PhysRevA.85.053636
https://doi.org/10.1038/nature08814
https://doi.org/10.1038/nature08814
https://doi.org/10.1126/science.1214987
https://doi.org/10.1126/science.1214987
https://doi.org/10.1088/1361-6455/aa5a1e
https://doi.org/10.1088/1361-6455/aa5a1e
https://arxiv.org/abs/1001.0774
https://doi.org/10.1126/science.aai8195
https://doi.org/10.1126/science.aai8195
https://doi.org/10.1103/PhysRevA.102.013314
https://doi.org/10.1103/PhysRevA.102.013314
https://doi.org/10.1088/1367-2630/ac0e56
https://doi.org/10.1088/1367-2630/ac0e56
https://doi.org/10.1103/PhysRevA.100.053602
https://doi.org/10.1103/PhysRevA.100.053602
https://doi.org/10.1080/00268976.2019.1575995
https://doi.org/10.1080/00268976.2019.1575995
https://doi.org/10.1103/PhysRevA.97.013606
https://doi.org/10.1103/PhysRevA.97.013606
https://doi.org/10.1103/PhysRevA.89.021601
https://doi.org/10.1103/PhysRevA.89.021601
https://doi.org/10.1103/PhysRevLett.120.100401
https://doi.org/10.1103/PhysRevLett.120.100401
https://doi.org/10.1103/PhysRevA.100.013612
https://doi.org/10.1103/PhysRevA.100.013612
https://doi.org/10.1103/PhysRevLett.128.020401
https://doi.org/10.1103/PhysRevLett.128.020401
https://doi.org/10.1103/PhysRevA.99.043604
https://doi.org/10.1103/PhysRevA.99.043604
https://doi.org/10.1007/s00601-018-1457-9
https://doi.org/10.1007/s00601-018-1457-9
https://doi.org/10.1103/PhysRevLett.107.233201
https://doi.org/10.1103/PhysRevLett.107.233201
https://doi.org/10.1126/science.aaf5134
https://doi.org/10.1126/science.aaf5134
https://doi.org/10.1103/PhysRevLett.121.023401
https://doi.org/10.1103/PhysRevLett.121.023401
https://doi.org/10.1103/PhysRevLett.89.250401
https://doi.org/10.1103/PhysRevLett.89.250401
https://doi.org/10.1103/PhysRevLett.105.170403
https://doi.org/10.1103/PhysRevLett.105.170403
https://doi.org/10.1103/PhysRevLett.93.143201
https://doi.org/10.1103/PhysRevLett.93.143201
https://doi.org/10.1103/PhysRevA.67.010703
https://doi.org/10.1103/PhysRevA.67.010703
https://doi.org/10.1016/0375-9474(73)90510-1
https://doi.org/10.1016/0375-9474(73)90510-1
https://doi.org/10.1088/0953-4075/40/7/011
https://doi.org/10.1088/0953-4075/40/7/011
https://doi.org/10.1134/S002136400722002X
https://doi.org/10.1134/S002136400722002X
https://doi.org/10.1007/s00601-011-0229-6
https://doi.org/10.1007/s00601-011-0229-6
https://doi.org/10.1103/PhysRevLett.108.263001
https://doi.org/10.1103/PhysRevLett.108.263001
https://doi.org/10.1103/PhysRevA.106.053310
https://doi.org/10.1103/PhysRevA.106.053310
https://doi.org/10.1103/PhysRevA.106.063316
https://doi.org/10.1103/PhysRevA.106.063316
https://doi.org/10.1103/PhysRevA.102.023311
https://doi.org/10.1103/PhysRevA.102.023311
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1016/j.aop.2008.03.003
https://doi.org/10.1016/j.aop.2008.03.003
https://doi.org/10.1098/rspa.1935.0010
https://doi.org/10.1098/rspa.1935.0010
https://doi.org/10.1016/j.physrep.2006.03.001
https://doi.org/10.1016/j.physrep.2006.03.001
https://doi.org/10.1038/nature04626
https://doi.org/10.1038/nature04626
https://doi.org/10.1103/PhysRev.47.903
https://doi.org/10.1103/PhysRev.47.903
https://doi.org/10.1103/PhysRevLett.71.4103
https://doi.org/10.1103/PhysRevLett.71.4103
https://doi.org/10.1016/S0370-1573(00)00107-1
https://doi.org/10.1016/S0370-1573(00)00107-1

	Energetics and Efimov states of three interacting bosons and mass-imbalanced fermions in a three-dimensional spherical harmonic trap
	1. Introduction
	2. Overview of the three-body problem
	2.1. General interaction strength
	2.2. Hyperspherical approach
	2.3. Efimov states

	3. Conclusion
	References


