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33 Abstract: Perennial ryegrass (Lolium perenne L.) is considered the most important pasture species 

34 in temperate agriculture, with over six million hectares of sown area in Australia alone. However, 

35 perennial ryegrass has poor persistence in some environments because of low tolerance to a 

36 range of both abiotic and biotic stresses. To breed perennial ryegrass cultivars with greater 

37 persistence and productivity may require evaluation of genotypes over a number of years. 

38 Persistence assessment in pasture breeding depends on manual ground cover estimation or 

39 counting the number of surviving plants or tillers in a known area. These methods are subjective 

40 and labour intensive, which may limit data collection in large scale breeding programs. With the 

41 rapid development of sensors and image processing algorithms, image-based high-throughput 

42 phenotyping (HTP) is becoming commonplace in the breeding of major food crops. Image-based 

43 HTP approaches consist of the deployment of a wide range of sensors on ground-based or 

44 airborne platforms and data analyzed through image-processing pipelines. Image-based HTP show 

45 high potential for use in pasture phenotyping in breeding programs and may be able to reduce 

46 timeframes for releasing new cultivars. Moreover, existing image-based HTP approaches could be 

47 further developed to include precise tools for phenotyping pasture persistence traits such as 

48 pasture senescence, botanical composition, pathogen and pest resistance. In this paper, we 

49 reviewed existing image-based HTP approaches in precision agriculture and discussed their 
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50 feasibility for perennial ryegrass persistence estimation in pasture breeding. Although the paper 

51 focuses on application in perennial ryegrass, the principles equally apply to other perennial forage 

52 species.

53 Keywords: perennial ryegrass persistence; pasture breeding; high-throughput phenotyping; 

54 sensors; image analysis 
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61

62 1.Introduction 

63 Perennial ryegrass (Lolium perenne L.) is the most important pasture species in temperate 

64 grazing systems, exceeding over six million hectares of sown area in Australia alone (Cunningham 

65 et al, 1994; Moate et al, 2012). Individual plants of perennial ryegrass may show low tolerance 

66 to both abiotic and biotic stresses, resulting in poor persistence. Poor pasture persistence creates 

67 a great challenge for livestock producers, who must utilise their agricultural lands productively 

68 and intensively within sustainable limits (Culvenor and Simpson, 2014). Perennial ryegrass is an 

69 outbreeding self-incompatible species (Wilkins and Humphreys, 2003), with a high degree of 

70 genetic diversity between individual plants in natural populations. Current limitations of pasture 

71 phenotyping methods coupled with its high degree of genetic diversity within breeding 

72 populations (Lin et al, 2017), results in new cultivar development in perennial ryegrass taking 

73 longer than most annual crops, taking 10-15 years from initial nursery establishment to the 

74 registration of a new cultivar (Hayes et al, 2013). Annual pasture dry matter production per unit 

75 area is an important consideration from the farmer's perspective since it directly influences the 

76 financial return of their capital investment (Wilkins, 1991). Long-term productivity of a sward 

77 depends on pasture persistence, which represents plant density or plant size (tiller number) in a 

78 known area (Waller and Sale, 2001). As such, the primary objectives of pasture breeding focus 
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79 on increasing annual pasture productivity with an improved pattern of seasonal production and 

80 to extend the productive life of the pasture (persistence). In pasture breeding programs, 

81 individual plants with more desirable attributes are selected by phenotyping morphological, 

82 physiological and biochemical traits over multiple years. Trait assessment depends on traditional 

83 methods based on visual observations, manual measurements or biochemical analysis (Walter et 

84 al, 2012). These methods are time-consuming and sometimes subjective, which may limit data 

85 collection in large scale pasture breeding programs. 

86 With rapid technology development, interest in the use of sensors for phenotyping plant 

87 traits has increased in agriculture research. The recent application of high-throughput 

88 phenotyping (HTP) across a range of crops includes a wide range of imaging and non-imaging 

89 sensors, deployed on ground-based or airborne platforms. However, image-based platforms 

90 have become the favoured approach in precision agriculture due to their low-cost, high 

91 resolution and high throughput. Image-based HTP platforms can detect reflectance values of 

92 plants, and reliably generate phenomic data representing plant development, architecture, 

93 growth or biomass productivity of single plants or populations. The existing HTP sensor-based 

94 tools utilised in other crops may have potential use in in pasture breeding programs (Walter et 

95 al, 2012) and could improve the efficiency of plant phenotyping for various aspects of pasture 

96 breeding. For example, image-based HTP pipeline showed robust estimation of herbage yield 

97 (Gebremedhin et al, 2019) and persistence (Jayasinghe et al, 2019; Jayasinghe et al, 2020) in 

98 perennial ryegrass breeding programs using both aerial-based and ground-based HTP platforms. 

99 However, the assessment of pasture persistence within breeding trials is not straightforward and 

100 still depends on conventional methods. Conventional plant phenotyping methods are often 

101 destructive that depend on expensive manual operations (Ubbens and Stavness, 2017). 

102 Therefore, conventional plant phenotyping methods have very limited throughput for 

103 comprehensive analysis of plant traits of an individual plant or across a population (Ubbens and 

104 Stavness, 2017). The objective of this review is to investigate existing image-based HTP 

105 approaches for field phenotyping and to evaluate their potential to replace conventional 

106 methods of persistence estimation in pasture breeding programs. 

107
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108 2. Conventional methods for pasture persistence estimation 

109 Pasture persistence is usually evaluated through field observations in the second or third 

110 year after sowing using conventional methods (Wilkins, 1991). Ground cover of a pasture cultivar 

111 with low persistence decays rapidly over time and creates bare ground within the sward, that 

112 provides an opportunity for weed ingression (Fulkerson et al, 1993). Ingression of weeds changes 

113 sward composition (perennial ryegrass vs. weeds), generally lowers the nutritive value of the 

114 sward (Doyle et al, 1989) and can be considered as an indicator of persistence of a sward (Waller 

115 and Sale, 2001). Annual pasture dry matter production of a cultivar with poor persistence will 

116 decrease over time due to depletion of surviving plants. Therefore, analysing long term dry 

117 matter production data from a single species sward or breeding plots would be a way to assess 

118 the expression of persistence (Chapman et al, 2014). Pasture senescence may indicate cessation 

119 of plant growth, development and resistance to both abiotic and biotic stresses (Makanza et al, 

120 2018a), and the amount of senescent pasture on the soil surface of breeding plots can be used 

121 as a key indicator of persistence in cultivar evaluation. Pasture ground cover, botanical 

122 composition, dry matter yield and pasture senescence can be used as measurements or 

123 processes to evaluate the expression of pasture persistence in breeding programs (Borra-Serrano 

124 et al, 2018).    

125

126  2.1 Ground cover

127   Plant ground cover is the fractional area of soil covered by plants when viewed from the 

128 nadir position (Luscier et al, 2006). Plant ground cover may include pasture, weeds, other 

129 herbage and litter, and can be measured as a percentage or fractional unit (Calera et al, 2001). 

130 Techniques to estimate pasture ground cover include point quadrat (Cunningham et al, 1994), 

131 line intercept (Henry et al, 1995), visual estimation (Cayley and Bird, 1996), digital image analysis 

132 (Richardson et al, 2001), and gap counting methods. Point frame, ocular telescope, and line 

133 intercept methods are a variation of the point quadrat method, which have been used in many 

134 studies to estimate pasture ground cover (Freebairn and Boughton, 1981; Lang and McCaffrey, 

135 1984; Eldridge and Rothon, 1992; Bari et al, 1995). A number of non-destructive techniques for 

136 plant ground cover estimation have been developed using digital red-green-blue (RGB) cameras 
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137 (McIvor et al, 1995; Zhou et al, 1998; Vanha-Majamaa et al, 2000; Borra-Serrano et al, 2018; 

138 Jayasinghe et al, 2019). However, the visual estimation method remains commonly used as it 

139 does not require any specialised equipment or training (Lodge and Murphy, 2006). 

140

141 2.2 Species composition

142 Species composition of a sward can change over time (Minnee et al, 2017), and may provide 

143 a potential indicator of the persistence of a pasture population. Ingression of less desirable and 

144 invasive weed species can contribute to sward decline, reducing farm productivity and 

145 profitability (Brazendale et al, 2011). A simple technique for composition estimation is reviewing 

146 the presence or absence of species in randomly selected quadrats, and this method is subjective 

147 and has limited value for most agronomic research due to its lack of consistency throughout data 

148 collection (Lynch, 1966). The rod point technique is a straightforward alternative method to the 

149 point quadrat method (Little and Frensham, 1993) and offers a rapid estimation of sward 

150 botanical composition. This method requires a thin rod to be placed horizontally at random 

151 points of the sward, where species touching the rod are noted. The number of readings for each 

152 species can be compared over the total number of readings to acquire the botanical composition 

153 of a sward. This rod point technique shows less bias between different operators and does not 

154 require skilled labour to estimate botanical composition of a sward. (Mannetje and Haydock, 

155 1963) introduced the dry matter ranking technique for pasture botanical composition estimation. 

156 The process of dry matter ranking requires a given area of pasture to be mechanically harvested 

157 and manually sorted into categories according to their species. Manual sorting depends on 

158 observer ability to assess the species. The DAFOR scale (D = dominant, A = abundant, F = frequent, 

159 O = occasional, and R = rare) is a method for visually assessing botanical composition in a sward, 

160 providing quantitative visual assessments of botanical composition within a known area of 

161 pasture mass (Martinson et al, 2017). . Dry matter ranking, point quadrat, rod point and the 

162 DAFOR scale methods rely on the same principles of taking multiple readings at points or in 

163 random patterns in a defined area (Rotz, 2006),  these conventional techniques are highly 

164 dependent on observer knowledge about plant species. Manual methods have a higher 

165 possibility of under or over-estimating species, depending on the size of the species or the size 
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166 of the investigation area, which will in turn lead to having poor accuracy of species composition 

167 estimation. However, image sensors and advanced image processing algorithms have a great 

168 potential to assess pasture composition under field conditions (Skovsen et al, 2017; Bateman et 

169 al, 2020). 

170

171 2.3 Pasture dry matter

172 A study conducted by (Ludemann et al, 2015) measured pasture persistence as a change in 

173 the rate of decline in annual pasture dry matter production due to a decline in surviving plants in 

174 an area. Pasture dry matter of a known area can be determined by mechanically clipping the 

175 pasture, oven-drying the samples at 105 0 C for 24 hours or until constant weight is achieved and 

176 weighing the dried sample (Cayley and Bird, 1996). This is the most straightforward dry matter 

177 yield measurement technique in pasture breeding (Martinson et al, 2017). However, it is a time-

178 consuming and  involves destructive sampling of the pasture area (Brummer et al, 1994). A 

179 pasture ruler is the first straightforward non-destructive tool to measure available pasture mass 

180 in sward or breeding plot (MLA, 2014). The single-probe capacitance meter, weighted-disc 

181 (Vickery and Nicol, 1982), rising-plate meter (Earle and McGowan, 1979), and "HFRO" sward stick  

182 (Hutchings, 1991) are all developments on the principle of a pasture ruler for point based 

183 assessment of pasture dry matter yield. The rising plate meter is widely used by researchers and 

184 farmers to estimate standing herbage mass (Martinson et al, 2017) due to its reasonably accurate 

185 estimation capability and ease of use. Due to the lack of efficiency of these conventional 

186 methods, gathering long-term dry matter data from a breeding trial is challenging for pasture 

187 persistence expressed as dry matter production changes over time (Ludemann et al, 2015). 

188 However, some existing phenomic approaches in precision agriculture, such as air-borne 

189 multispectral images and sensor-based plant height estimates may enable high-throughput 

190 phenotyping of yield in perennial ryegrass sward or breeding programs (Trotter et al, 2010; Alem 

191 et al, 2019; Gebremedhin et al, 2019; Karunaratne et al, 2020). Moreover, with varying climatic 

192 conditions each year, long term annual dry matter data may not be a precise element to attribute 

193 changes to pasture persistence (Tharmaraj et al, 2014; Ludemann et al, 2015).

194
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195 2.4 Pasture senescence 

196 Accumulated dried matter from leaves, stems and pseudostems in perennial ryegrass swards 

197 result from pasture senescence (Woodward, 1998), due to  subsequent death of mature tissue. 

198 Pasture senescence is the process of remobilisation and transfer of soluble constituents from 

199 mature to immature plant tissues that occur with advancing age of plant parts, or through abiotic 

200 and biotic stresses (Allen et al, 2011). Pasture senescence rate may indicate a positive 

201 relationship between plant growth, development and resistance to abiotic and biotic stressors 

202 (Daily et al, 2013). For example, if pasture species are exposed to stress conditions such as water 

203 deficit and extreme temperature, strongly resistant cultivars may produce the smallest 

204 proportion of senescent tissue on the soil surface (Calviere and Duru, 1995). Therefore, 

205 estimation of the amount of senescent pasture in breeding plots can be used to monitor 

206 persistence of pasture species. The estimation of pasture senescence in breeding plots can be 

207 achieved using dry matter ranking methods or visual observations (Mannetje and Haydock, 

208 1963). Advanced ML algorithms and some of the high-throughput phenotyping approaches in 

209 precision agriculture have a great potential to develop precise tools to estimate pasture 

210 senescence in breeding programs (Higgins et al, 2014; Ren et al, 2016).         

211  Phenotypic data collected from conventional methods for pasture persistence estimation 

212 are recorded either visually or through destructive harvesting, however, data collection is time-

213 consuming, sometimes subjective and labour intensive. The chance of errors in measurement 

214 can also be increased due to uneven ground, trampling of pasture, plant heterogeneity, and 

215 sward height differences (Murphy et al, 1995). The development of cost-effective efficient 

216 methods for pasture persistence evaluation in pasture breeding programs may be achieved by 

217 using high throughput phenotyping techniques (Borra-Serrano et al, 2018). 

218  

219 3. High-throughput plant phenotyping

220 In the past few decades, precision agriculture has emerged as a major discipline to optimise 

221 the use of natural resources in arable lands (Pratap et al, 2015). Plant phenotyping refers to a 

222 comprehensive assessment of plant morphological, physiological and biochemical traits such as 

223 plant growth, development, resistance against stresses, architecture and physiology (Walter et 
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224 al, 2015). Consequently, traditional plant phenotyping methods have evolved towards HTP 

225 approaches. HTP consists of sensor technologies mounted on platforms to allow for data capture 

226 at scale and a data handling workflow to acquire targeted-specific plant traits for individual 

227 plants, plots or paddocks (Figure 1). 
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248 High-throughput phenotyping offers greater potential to enhance the efficiency and 

249 accuracy of phenotyping more complex traits in both indoor environment or under outdoor field 

250 conditions (Walter et al, 2012; Fiorani and Schurr, 2013). Due to the high genetic diversity of 

251 perennial ryegrass populations, phenotyping plant persistence may require examining many 

Figure 1. Elements of high throughput phenotyping technologies that could be used for estimating 

expression of pasture persistence under field conditions, where LiDAR is light detection and 

ranging, and ML is machine learning. 
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252 genotypes under field conditions (Wilkins, 1991). Therefore, in this review, we focused on image-

253 based high throughput techniques for pasture phenotyping under field conditions.

254

255 4. High throughput phenotyping platforms

256 Field-based HTP platforms range from simple handheld devices to complex ground-based or 

257 space-borne systems (Figure 2). In order to facilitate high-throughput data capture, phenomic 

258 platforms are integrated with various sensors, that may allow the simultaneous measurement of 

259 multiple phenotypic traits under field conditions (Ruicheng et al, 2018).

260

261 4.1 Ground-based platforms 

262 Ground-based platforms include handheld devices or modified vehicles. Handheld devices 

263 such as SPAD (soil plant analysis development) meters can be used to measure chlorophyll 

264 concentration, or GreenSeeker can be used to measure NDVI (Qiu et al, 2018). Poor accuracy and 

265 the time to measure multiple plant traits may be a key bottleneck of implementing handheld 

266 devices for pasture phenotyping under field conditions. Ground-based small motor vehicles like 

267 buggies, tractors and quad bikes have been modified and equipped with a wide range of sensors 

268 to overcome this bottleneck. These ground-based platforms can be driven in the field manually 

269 or automatically using computer technology (Lam et al, 2018). Ground-based modified vehicles 

270 could replace manual labour and provide more precise data for agricultural research 

271 (Gebremedhin et al, 2019). However, the application of ground-based vehicles is challenging 

272 under some field conditions due to uneven geometry (Bochtis and Sorensen, 2009), extreme 

273 weather conditions, and obstacles in the field (Bochtis et al, 2014). 

274

275 4.2 Airborne platforms 

276 Aerial-based platforms include unmanned aerial vehicles (UAVs), low altitude aircraft, hot 

277 air balloons and helicopters which can be used as a solution for some limitations associated with 

278 ground-based and spaceborne platforms in plant phenotyping (Pratap et al, 2015). However, the 

279 effectiveness of an airborne platform may depend on the capability for integration with multiple 

280 sensors, payload and weather conditions and associated acquisition time (Tsach et al, 2010). Due 
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281 to the recent technology development, UAVs have been undergoing extraordinary development 

282 and are now considered a powerful sensor-bearing platform for many agricultural and 

283 environmental applications (Narayanan et al, 2015). Flying and maintenance costs of a UAV is 

284 relatively low, compared to the cost associated with other airborne and spaceborne platforms. 

285 UAVs can be integrated with ultra-high spatial resolution sensors for phenomics data acquisition 

286 and can be deployed as frequently as necessary (Hardin and Hardin, 2010). Flying time and 

287 battery-life of UAVs can be limited according to body type, payload, and operating conditions, 

288 and this may create a bottleneck for the use of UAVs for plant phenotyping.

289
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307

308 4.3 Spaceborne platforms 

Figure 2. Scaling of high-throughput phenotyping platforms in precision agriculture, where 

(a) is field scanning using a handheld sensor, (b) ground-fixed environmental sensor, (c) a 

phenotyping ground vehicle, (d) a field scanning platform, (e) a phenotyping tower, (f)  an 

unmanned aerial vehicle, (g) a low altitude phenotyping helicopter, (h) a phenotyping hot air 

balloon and (i) a satellite remote sensing platform.   
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309 The use of satellites for plant phenotyping began about three decades ago after satellites 

310 were equipped  with high-resolution spectral sensors (Hoepffner and Zibordi, 2009), and 

311 presently, there are a total of 2,666 satellites orbiting earth (UCS, 2020). The majority of satellites 

312 provide data at 10-30 m spatial resolution with, on average, 16 days revisiting time (Chang and 

313 Clay, 2016). However, modern satellites offer high resolution spatial data with a shorter revisiting 

314 time. For instance, WorldView-2 has 2.4 m spatial resolution and a revisiting time of 1.1 - 3.7 days 

315 (Chang and Clay, 2016). Pasture persistence estimation may require data from plant traits over 

316 many years. Satellites are capable of providing long-term spectral data to the public for free, such 

317 as the moderate resolution spectral data from Sentinel 2, LANDSAT 7 ETM+ and LANDSAT 8 OLI. 

318 Satellite remote sensing platforms are considered to show great prospects for pasture 

319 persistence estimation of a sward (Phiri and Morgenroth, 2017). Buying high resolution data from 

320 satellites (e.g. GeoEye-1, WorldView-3 and QuickBird) is still a costly process (Chang and Clay, 

321 2016; EOS, 2019), which makes use of high resolution satellite data for pasture phenotyping 

322 challenging in small scale breeding programs. Some of the sensors equipped with satellites such 

323 as spectral cameras and LiDAR (Light Detection and Ranging) sensors may have reduced quality 

324 depending on atmospheric conditions or may not penetrate through clouds or water vapour 

325 (Hoepffner and Zibordi, 2009). The spatial and temporal resolution of satellites combined with 

326 the dependency on good atmospheric conditions when passing over the target site may limit the 

327 regular application of satellite remote sensing for plant phenotyping. 

328

329 5. Sensors for high-throughput phenotyping 

330 The most important aspect of all remote sensing platforms is the sensors themselves. These, 

331 acquire energy in a specific region of the electromagnetic spectrum (EMS) that represents plant 

332 morphological, physiological and biochemical properties of the target object (Tsach et al, 2010; 

333 Qiu et al, 2018; Che Ya et al, 2019). Sensors can be classified  into two different classes for 

334 precision agriculture in terms of imaging and non-imaging functionality (Zhu et al, 2018). Image 

335 sensors have become the dominant class of sensor used in precision agriculture for plant 

336 phenotyping due to the rapid progress in image capturing and processing technologies (Ruicheng 

337 et al, 2018). 
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338

339 5.1 Image sensors for phenotyping pasture persistence 

340 Image sensors capture reflected energy of an object in the visible, near-infrared, or 

341 shortwave infrared region of the EMS and generate monochrome, RGB, multi- and hyperspectral, 

342 LiDAR or thermal imagery (Li et al, 2014; Perez et al, 2017; Ruicheng et al, 2018). Image sensors 

343 collect information about phenomenon through active or passive acquisition systems (Lillesand 

344 et al, 2015; Zhu et al, 2018). Active image sensors use their own energy source to generate 

345 reflected spectrum of a target object and capture reflected energy wavelengths from the target. 

346 In contrast, solar radiation is the primary energy source for passive image sensors. Existing image-

347 based HTP approaches show that image sensors can be sensitive to discriminate 

348 morphophysiological characteristics of plants, and have higher throughput, reliability and 

349 repeatability at all scales of measurements than conventional plant screening techniques, such 

350 as, visual estimation and manual counting  (Perez et al, 2017). The ground sampling distance 

351 (GSD) is the distance between two consecutive pixel centers measured on the ground, and it 

352 depends on the image acquisition height and the spatial resolution of the sensor (Popescu et al, 

353 2016). GSD of modern imaging sensors is low compared to conventional analogue camera due to 

354 the high spatial resolution. This may allow quantification of complex plant traits related to 

355 growth, dry matter yield and stress resistance in a controlled environment or under field 

356 conditions (Walter et al, 2012). As such, image-based HTP approaches may have high applicability 

357 for persistence estimation in perennial ryegrass breeding programs. 

358

359 5.1.1 RGB imaging

360 RGB imaging sensors capture reflected energy in the visible region of the EMS (400–700 nm) 

361 with the help of a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor 

362 (CMOS) (Perez et al, 2017). Properties of spectral reflectance of pasture in the visible range of 

363 the EMS may depend on plant morphological and physiological traits such as plant size, leaf 

364 arrangement and chlorophyll concentration (Gates et al, 1965). RGB imaging sensors deployed 

365 on aerial or ground-based platforms may have feasibility for quantifying changes in plant growth, 

366 development and health status over time. These phenotypic traits may help to differentiate 
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367 tolerant and sensitive cultivars in breeding programs (Rajendran et al, 2015). There are a number 

368 of RGB image-based phenomic tools available for perennial ryegrass persistence estimation. For 

369 example, recent studies have shown that proximal RGB images could be used to quantify and 

370 classify perennial ryegrass ground cover using automated phenomics pipelines (Figure 3), which 

371 could replace traditional visual estimations of perennial ryegrass persistence in pasture breeding 

372 programs (visual ground cover vs. RGB sensor-based ground cover, r- 0.75, p = 0.001; visual 

373 ground cover vs. multispectral sensor-based ground cover– r - 0.80, p = 0.001)  (Jayasinghe et al, 

374 2019). Moreover, vegetation indices extracted from airborne RGB were tested for use in 

375 perennial ryegrass persistence estimation (Borra-Serrano et al, 2018), pathogen detection in 

376 crops (Zhu et al, 2018), biomass estimation in wheat (Kipp et al, 2014) and biomass estimation in 

377 perennial ryegrass (Borra-Serrano et al, 2019). However, the overlapping of leaves in plants may 

378 reduce the accuracy of RGB image-based phenomics data (Golzarian et al, 2011). The background 

379 noise from soil brightness can also affect the quality of RGB image acquisition. Moreover, the 

380 visible region of reflected spectra provides only limited information about biochemical characters 

381 of the plants, which may limit the application of RGB sensors for phenotyping traits related to 

382 crop and pasture nutritive parameters (Fiorani and Schurr, 2013). 

383

384

385

386

387

388

389

390

391

392

393 Figure 3. Application of proximal RGB imaging for perennial ryegrass ground cover estimation in 

394 pasture breeding plots; (a) A DSLR camera mounted on a tripod for RGB image acquisition (b) 

395 RGB image (12 megapixels) from nadir position and (c) classified RGB image using a pixel-based 
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396 image analysis techniques, where red colour represents perennial ryegrass green fraction, 

397 adapted from (Jayasinghe et al, 2019). 

398

399 5.1.2 Spectral imaging

400 Spectral sensors acquire reflected radiation of an object in the visible region (400 - 700 nm) 

401 and the infrared (IR) region (700 - 2500 nm) of the EMS (Qiu et al, 2018). According to the spectral 

402 resolution, spectral cameras can be separated into two groups, namely multispectral and 

403 hyperspectral cameras (Ferrato and Forsythe, 2013). Multispectral cameras capture 3-25 discrete 

404 spectral bands (broadbands) across the EMS, including red, green, blue, and NIR (near infrared 

405 reflectance) with  spectral resolution of >10 nm for each band (Perez et al, 2017). Hyperspectral 

406 cameras may capture continuous spectral bands (>25 bands) within a specific range of 

407 wavelengths and spectral resolution can be less than 10 nm per band (Kise et al, 2010). Pasture 

408 nutritive characteristics prediction (Pullanagari et al, 2015; Pullanagari et al, 2018; Shorten et al, 

409 2019), mapping the spatial distribution of botanical composition and herbage mass in pasture 

410 (Kise et al, 2010), multi-temporal assessment of grassland dynamics (Gholizadeh et al, 2020), 

411 monitoring of grassland degradation (Wang et al, 2010), classification of grassland successional 

412 stages (Möckel et al, 2014), insect damage identification in crops (Jianrong et al, 2012), , 

413 identification of insect-damaged in wheat kernels (Singh et al, 2010) and early detection of rice 

414 blast at seedling stage (Yang, 2012) are some of the recent applications of hyperspectral sensors 

415 in precision agriculture. Airborne multispectral sensors  have also been used in precision 

416 agriculture for mapping and monitoring of pasture biomass and grazing patterns (Michez et al, 

417 2019), estimation of spatial and temporal variability of pasture growth and digestibility (Insua et 

418 al, 2019), prediction of biomass yield in perennial ryegrass breeding programs (Gebremedhin et 

419 al, 2020), estimation of pasture dry matter yield at paddock scale (Karunaratne et al, 2020). Sward 

420 botanical composition, herbage yield, pathogen and insect resistance and pasture ground cover 

421 can be used as a population trait to evaluate persistence of perennial ryegrass (described in more 

422 detail in section 2). (Jayasinghe et al, 2019) have recently developed a spectral camera-based tool 

423 for perennial ryegrass persistence estimation that allows for the estimation of perennial ryegrass 

424 ground cover in pasture breeding (Figure 4). However, further research is required to improve 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

425 the accuracy and feasibility of the tool for paddock scale applications. Modification of these 

426 applications may be promising as a more precise sensor-based tool to assess persistence of 

427 perennial ryegrass in breeding plots or swards. Spectral sensors produce large datasets and may 

428 require advanced computational power for data handling and storing (Yang et al, 2020). The 

429 quality of image acquisition from spectral sensors may depend on ambient conditions and 

430 extensive calibration protocols may be required during data acquisition and data processing to 

431 improve the quality of phenomic outcomes. 

432
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Figure 4. The multispectral spectral image-based high-throughput pipeline for perennial ryegrass 

ground cover estimation; (a, b) unmanned aerial vehicle and the ground control unit, (c) NDVI 

orthomosaic, where the intensity of pseudocolour green represents NDVI variation of the 

orthomosaic, (d) the ground cover classification map where green represents perennial ryegrass 

ground cover; orange represents soil and weed cover within the experimental plot boundaries, 

(adapted from Jayasinghe et al, 2019).
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454

455

456

457 5.1.3 Thermography 

458 Reflected radiation in the IR (infrared) region (wavelength range: 9-14 µm) shows a 

459 relationship with the overall heat of its surface, which is referred to as the "heat signature" 

460 (Gonzalez-Dugo et al, 2013). Thermography is an imaging technique of infrared radiation, which 

461 visualises an object using a heat signature (Walter et al, 2012). The transpiration rate can be 

462 reduced due to the stomata of leaves close, under water deficit conditions (Nanda et al, 2018). 

463 Due to lowering transpiration rate, plant canopy temperature of well-watered plants can be 

464 lower than plants that are water-stressed (Walter et al, 2012). Thermal imaging may have its 

465 greatest potential in identifying drought-tolerant genotypes in plant breeding programs 

466 (Gonzalez-Dugo et al, 2013; Zia et al, 2013). Drought resistance of perennial ryegrass may in turn 

467 support its persistence during drier summers, which can be phenotyped using thermal imaging 

468 in pasture breeding. Data acquisition time is very important in thermography as subtle changes 

469 in environmental conditions can affect acquired data (Still et al, 2019). A good knowledge of 

470 emissivity of the object and its surrounds is also required for more accurate image acquisition 

471 (Havens and Sharp, 2016). Thermal imaging is more suited to aerial vehicles with an altitude that 

472 may minimise the amount of time and images required to capture the whole trial site.

473

474 5.1.4 LiDAR

475 Light Detection and Ranging is laser technology, that uses a laser pulse to produce a point 

476 cloud by calculating the time difference between laser pulse emission and reflected light 

477 detection (Kumar et al, 2015). The point cloud is a constructed 3D structure (Lin, 2015), which 

478 may comprise physical dimensions of a target object. The LiDAR sensor has been a widely used 

479 technology in different agricultural studies since 1980 (Lee et al, 2010). Pasture biomass 

480 estimation (Wiering et al, 2019), dry matter yield and growth rate measurement in perennial 

481 ryegrass (Ghamkhar et al, 2019), mapping and monitoring of biomass and grazing in pasture 

482 (Michez et al, 2019),  weed detection and discrimination from grass in agricultural lands (Escolà 
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483 et al, 2012; Andújar et al, 2013), pest/disease monitoring in the field (Gebru et al, 2017; Pham et 

484 al, 2018; Song et al, 2020), determination of foliage yield and growth rate in perennial ryegrass 

485 (Ghamkhar et al, 2019) and estimation of herbage yield in tall fescue  (Schaefer and Lamb, 

486 2016)are recent applications of UAV-based LiDAR in precision agriculture. These approaches 

487 show prospects to use LiDAR sensors as an HTP tool for phenotyping pasture traits such as canopy 

488 cover, root architecture, herbage biomass, plant volume and plant structure, species composition 

489 and pest resistance. However, it may require complex data analysis pipelines for phenomics data 

490 extraction from LiDAR images as it generates “big data sets”(Qiu et al, 2019). LiDAR sensors are 

491 a relatively expensive technology compared to other imaging sensors and the quality of data 

492 acquisition may be impacted by environmental factors such as moisture and small particles in the 

493 air (Xharde et al, 2006).

494

495 5.1.5 Fluorescence imaging

496 Fluorescence imaging is an acquisition of the fluorescence signal in which particular chemical 

497 compounds, when hit with a specific wavelength emit a different specific wavelength 

498 (Wouterlood and Boekel, 2009). The fluorescing part of plant tissue is the chlorophyll complex. 

499 Plant pathogens are severe constraints to productivity and persistence of pasture in the 

500 temperate region, and early detection of pathogens is essential to minimise the spreading of 

501 infections. Investigation of pathogen resistance in pasture breeding is often based on artificial 

502 inoculation in controlled environments, and these procedures are biased and time-consuming 

503 for targeted improvement of disease resistance. In recent studies, fluorescence imaging was used 

504 as a precise tool to diagnose virus infection in crops and early response to biotic and abiotic stress 

505 in relation to changes of photosynthetic pigments in crops (Lohaus et al, 2000; Chaerle et al, 

506 2007). Identification of perennial ryegrass genotypes with greater pathogen resistance could be 

507 achieved using fluorescence imaging. The fluorescence imaging technique could also be used in 

508 research for screening plant traits such as frost and salt tolerance (Buschmann and Lichtenthaler, 

509 1998; Gorbea and Calatayud, 2013). An ability to survive in freezing temperatures is an important 

510 trait, which can be affected pasture survival rate in the temperate region (Wilkins, 1991). Most 

511 of the fluorescence imaging studies are limited at the level of a single leaf or an individual plant 
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512 level, and the level of power requirement for generating fluorescence signal may limit the use of 

513 this technique in field-based applications (Li et al, 2014). 

514

515 5.1.6 X-ray computed tomography 

516 X-ray computed tomography (X-ray CT) is a non-destructive technique for visualising interior 

517 features of solid objects, which can generate a 3D image of an object from an extensive series of 

518 2D radiographic images (Li et al, 2014). X-ray computed tomography has been applied for many 

519 crops, including barley, maize, wheat, and chickpea, to examine non-destructive root structure 

520 (Lontoc-Roy et al, 2006; Hargreaves et al, 2009). Perennial ryegrass plants with longer root 

521 systems can uptake available nutrition and water from deeper soil layers, which may support 

522 plants to survive under some abiotic stresses such as drought and nutrition deficiency. (Sokolovic 

523 et al, 2013) discovered that perennial ryegrass cultivars with better persistency showed higher 

524 proportions of deep roots which were 8 % heavier in total compared to poorly persisting cultivars. 

525 The implementation of X-ray CT for phenotyping pasture root morphology can be used to identify 

526 drought resistance genotypes in breeding programs. However, X-ray CT is a time-consuming 

527 technique and requires a high energy supply to generate an X-ray CT image (Li et al, 2014). 

528 Therefore, applications of X-ray CT for root phenotyping may limit for small scale under field 

529 conditions.  

530

531 Field deployment of image sensors is promising as an effective and efficient source of reliable 

532 phenomics data for pasture phenotyping. However, data extraction from images, data 

533 interpretation and statistical analysis must also be considered when developing image-based 

534 tools for perennial ryegrass persistence estimation and these will be covered in the following 

535 sections.

536

537 6. Phenomic feature extraction from images

538 The process of quantitative feature extraction from images involves a pre-processing workflow 

539 and feature extraction pipeline. Prediction of some pasture traits such as dry matter yield can be 

540 achieved using vegetation indices (Gebremedhin et al, 2019). However, development of 
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541 prediction tools for some measurements such as ground cover classification may require 

542 advanced machine learning algorithms for phenomic feature extraction. The complexity of the 

543 required pipeline for feature extraction may depend on the target trait. Estimation of perennial 

544 ryegrass persistence may require investigating changes in more complex processes such as 

545 botanical composition and plant senescence (described in more detail in section 2.). Therefore, 

546 we have reviewed a range of phenomic features such as VIs, object-based and pixels-based 

547 approaches and their feasibility for perennial ryegrass persistence estimation. 

548

549   6.1. Image preprocessing  

550  In preprocessing, images are imported into a computer-based script and run through a series of 

551 steps such as image cropping, contrast improvement, colour noise reduction, image smoothing, 

552 image reconstruction, geometric correction and radiometric calibration (Perez et al, 2017). Image 

553 preprocessing may improve the quality of data extraction in subsequent steps (Wang et al, 2017). 

554 Geometric error of acquired airborne images is a common defect of remote sensing data due to 

555 altitude differences between the camera and the target position on the ground (Gebremedhin et 

556 al, 2019). Geometric calibration (georectification) is the process to accurately link geotagged 

557 images with a known ground location. The most common way of geometric calibration is done 

558 by matching geo locations of ground control points (GCP) with geotagged airborne images (Hu et 

559 al, 2018).

560 Airborne and spaceborne images may have fluctuation in the radiometric resolution due to 

561 changes in environmental factors such as brightness, cloudiness or surface temperature during 

562 image acquisition (Wyatt, 1978b). Several approaches of radiometric calibration methods are 

563 available, depending on the data acquisition and extraction methods (Wyatt, 1978c). The use of 

564 known spectral values of ground-based panels is a widely implemented calibration method 

565 (Wyatt, 1978a; Guo et al, 2019). To estimate pasture persistence in breeding plots may require 

566 evaluating images from many years, and image data acquisitions could happen under a range of 

567 environmental conditions at different times of the year. Therefore, radiometric calibration in 

568 image preprocessing is an important element to maintain consistency of airborne images. After 
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569 preprocessing, images analysis algorithms are executed through a computer vision workflow to 

570 extract target phenomic features such as VIs, ground cover and texture.

571

572 6.2 Feature extraction

573 Total incident solar radiation reflects, transmits, and absorbs on the surface of an object, and 

574 the ratio of the reflected portion to the entire incident solar radiation is called spectral reflectance 

575 (Zwiggelaar, 1998). The spectral reflectance of an object consists of a full spectrum, and the 

576 amplitudes of spectral reflectance within a specific region of the EMS may be subject to biophysical 

577 properties of a target object (Gates et al, 1965)(Figure 5). An image sensor captures particular 

578 regions of spectral reflectance, called "spectral bands", which stacks properties of spectral 

579 information in small regions, called "pixels" (Abdou et al, 1996). In plant phenomics, spectral 

580 properties of pixels may transform into a legible format such as vegetation indices, pixel-based and 

581 object-based features such as ground cover and plant volume using an automated or a semi-

582 automated workflow.

583

584
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592
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597

Figure 5. (a) The acquisition of reflectance bands from spaceborne hyperspectral sensor (e.g. 

Landsat-7 ETM; Enhanced Thematic Mapper), (b) typical spectral reflectance curves for soil, 

water, and plants where colour and grey area represents locations of acquired spectral bands 

of the hyperspectral sensor (e.g. Landsat-7 ETM+; data source for the graph from Roy et al., 

2016).
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598 6.2.1 Vegetation indices 

599  Vegetative indices (VIs) are an algebraic combination of two or more spectral bands 

600 designed for quantitative and qualitative evaluations of plant physiological and biochemical 

601 properties in remote sensing studies (Abdou et al, 1996). The first two VIs; ratio index (RI) and  

602 vegetation index number (VIN) were developed by (Pearson and Miller, 1972) for mapping of 

603 standing crop biomass and estimation of the productivity of the shortgrass, combining NIR and 

604 red spectral bands (Abdou et al, 1996). With the recent technological progress, image sensors 

605 have been improved in acquisition speed, spatial resolution, and sensitivity range of spectral 

606 sensor, which may result in a wide range of VIs in precision agriculture. In this section, we discuss 

607 recent applications of VIs in precision agriculture and their feasibility for pasture persistence 

608 estimation.

609 Annual dry matter yield data across consecutive years is a useful means to assess persistence 

610 in pasture breeding. However, the weaknesses of conventional methods for pasture mass 

611 estimation may create a great challenge to breeders to use long-term dry matter yield data for 

612 assessment of persistence (Zwiggelaar, 1998). Normalized difference vegetation index (NDVI) is 

613 the normalised ratio between the red and near-infrared bands, proposed by Rouse (Rouse et al, 

614 1974). Normalized difference vegetation index has a positive relationship with chlorophyll and 

615 nitrogen concentration in plant materials (Xue and Su, 2017). The mathematical equation of NDVI 

616 can be expressed as NDVI = (Rn - Rr)/ (Rn + Rr), where Rn and Rr are the reflectance values of near-

617 infrared and red bands. A recent study showed that combining NDVI and plant height offers a 

618 robust method to estimate herbage dry matter yield in perennial ryegrass breeding programs 

619 (Gebremedhin et al, 2019). Moreover, NDVI derived from seasonal time-series LANDSAT images 

620 showed a high throughput for forest aboveground biomass estimation (Zhu and Liu, 2015). 

621 However, the NDVI measure is known to saturate after a certain biomass density or ground cover 

622 is achieved (Lu, 2006). The green normalised difference vegetation index, GNDVI = (Rn - Rg)/(Rn + 

623 Rg)  is the normalised ratio between the green and near-infrared bands of EMS. Green normalised 

624 difference vegetation index is sensitive to variations in green vegetation (Xue and Su, 2017). 

625 However, the index can be saturated in dense vegetation conditions when the leaf area index 

626 becomes high. Green normalised difference vegetation index derived from satellite remote 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

627 sensing was efficiently used for assessment of winter crop biomass (Raymond et al, 2013). 

628 Further development of these approaches for pasture breeding may open a great opportunity to 

629 assess persistence in large-scale breeding programs.   

630 The estimation of fractional vegetation cover is feasible using image-based HTP (Balfourier 

631 et al, 1998), which may replace manual methods of ground cover estimation. UAV-based digital 

632 colour images were used to estimate the green fraction of pasture breeding plots using VIs 

633 (Borra-Serrano et al, 2018), and this approach has shown a strong relationship between manual 

634 ground cover and vegetation indices such as excess green (ExG2) = (2 x G - R – B)/(R + G + B), 

635 green leaf index (GLI) = (2 x G - R – B)/(2 x G + R + B) and normalised green intensity (NGI) = G/(R 

636 + G + B); where R, G, and B represent red, green and blue bands (visual ground  cover vs. sensor-

637 based ground cover - r > 0.88,  p = 0.001).The senescent fraction of ground cover may be used as 

638 a parameter for pasture persistence estimation. However, current methods for pasture 

639 senescence estimation in pasture breeding methods depend on hand sorting clipped samples. A 

640 laboratory radiometric method has been developed for the rapid determination of green and 

641 senescent fractions in clipped perennial ryegrass samples using NDVI (Tucker, 1980). This method 

642 may permit the use of rapid green and senescent fraction determinations to replace hand sorting, 

643 and may also apply as ground-truth sampling where destructive dead and green biomass is 

644 necessary for validating remote sensing methods. With further development, this method could 

645 be implemented to estimate pasture senescence as an indicator of pasture persistence. However, 

646 separation of perennial ryegrass dead fraction from soil may be problematic using a multispectral 

647 camera as both soil, and dead fraction provide a relatively similar spectral signature in the visible 

648 region of EMS. However, spectral properties of the dead fraction may show different spectral 

649 properties in the shortwave NIR region of EMS due to the presence of cellulose and lignin (Nagler 

650 et al, 2003). The cellulose absorb index (CAI) and plant senescence reflectance index (PSRI) 

651 describe the average depth of the cellulose absorption feature at 2.1 nm wavelength in 

652 reflectance spectra and have been implemented to estimate plant litter in grassland (Ren et al, 

653 2012). (Jayasinghe et al, 2020) have successfully used Vis, CAI and PSRI extracted from a proximal 

654 hyperspectral sensor for pasture senescence estimation. 

655  (Nagler et al, 2003)��������� ���������� ����� (���) = �.� (��.� + ��.�) ― ��.�
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656 (Serrano et al, 2002)���������� ���������� ������ ����� (����) =

���( ���.�) ― ���( ���.�)���( ���.�) + ���( ���.�)
    

657 R2.0, R2.1, R2.2, R1.7 and R1.6 are reflectance factors in bands at 2.00-2.05, 2.08-2.13, 2.19-2.24, 1.754, and 1.680 μm, 

658 respectively.

659              

660 This study showed a positive relationship between these VIs and senescent pasture in 

661 perennial ryegrass breeding plots andthe application of these approaches may enable rapid 

662 estimation of plant senescence in pasture breeding to assess resistance to abiotic stress such as 

663 drought and nutrition deficiencies (Regression model for senescent fraction prediction, y= 429x1 

664 + 21.83, R2 = 0.57, SE = 3.64; y= 595.67x2 + 17.335, R2 = 0.43, SE = 4.20; where y is senescent 

665 fraction, x1 is CAI and x2 is NDLI). 

666 Estimation of sward botanical composition has received more attention from researchers in 

667 recent decades (Peng et al, 2018) because variations in sward botanical composition can effect 

668 pasture productivity (Waller and Sale, 2001; Reed et al, 2011). Spectral heterogeneity among 

669 perennial ryegrass and weeds may offer potential to develop a rapid non-destructive method to 

670 estimate weed ingression in breeding plots or a sward (Walter et al, 2012). Plant species diversity 

671 was precisely estimated at a fine-scale using hyperspectral indices such as ratio vegetation index 

672 (RVI) = R675/R782, NDVI = (R782 − R675)/(R782 + R675), difference vegetation index (DVI) = R810 − R680 

673 and soil-adjusted vegetation index (SAVI) = ((R782-R675)/(R782 + R675 + 0.2)) (1.2), where the ratio 

674 of R represent reflectance at ith band to the sum reflectance value (Peng et al, 2018). Moreover, 

675 a recent study has demonstrated the potential of hyperspectral-based NDVI for mapping the 

676 spatial distribution of botanical composition in pasture using linear discriminant analysis models 

677 (Suzuki et al, 2012). These studies have discovered the close connection between plant diversity 

678 and spectral indices, and it may enable the estimation of weed ingression to assess persistence 

679 in pasture breeding.

680 The automated estimation of plant diseases and insect attack at an early stage is vital for 

681 precision crop protection. Many studies have revealed that vegetation indices derived from 

682 remote sensing platforms have a high potential for discriminating healthy and diseased or pest 

683 stressed plants (Chew et al, 2014). Discrimination of plants that were non-inoculated or 
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684 inoculated with Uromyces betae was achieved using the NDVI-based classification model at 71% 

685 accuracy (Rumpf et al, 2009). Moreover, VIs; chlorophyll absorption index (CAI) = Rn x Rr/Rgx2, 

686 where Rn, Rr and Rg are spectral reflectance of NIR, red and green bands; photochemical radiation 

687 index (PRI) = (R531 - R570)/(R531 + R570) where the ratio of R represents reflectance at the ith band 

688 to the sum reflectance value.  PRI has shown noticeable reduction of  index value from the 

689 infected plants  under light stress conditions (p = 0.001) (Chew et al, 2014). Analysing the 

690 relationship between manual disease rating and selected vegetation indices from pasture 

691 breeding plots could be used to develop a robust model for plant disease and pest susceptibility 

692 rating in terms of pasture persistence estimation. 

693 Current remote sensing studies in precision agriculture show a robust empirical relationship 

694 between plant canopy characteristics and VIs. However, the relationships developed between 

695 ground truth sampling and remotely sensed data might not be accurate due to high-resolution 

696 saturations, soil brightness or other factors such as dust, cloud and shadowing. For example, in 

697 wheat, the mathematical relationships developed between ground truth observations of plant 

698 canopy characteristics, and corresponding values of vegetation indices for five different 

699 geographical locations were qualitatively similar but differed in the specific values of the 

700 coefficients in the relationships across the sites (Wiegand et al, 1992). Therefore, HTP approaches 

701 for pasture persistence estimation may need to move forward with more advanced image 

702 analysing procedures such as pixel-based or object image analysis scripts.

703

704 6.2.2 A pixel-based image analysis for feature extraction 

705 The pixel-based phenomics pipeline analyses the spectral properties of every pixel within the 

706 area of interest using either a supervised or unsupervised classification or some combination 

707 (Weih and Riggan, 2010). It has been found that use of pixel-based methods for high-resolution 

708 images (at least 118 pixels per cm) results in low accuracy in image classification due to a "salt 

709 and pepper" effect (De Jong et al, 2001; Whiteside et al, 2011). Perennial ryegrass may have more 

710 heterogeneous individuals in large-scale breeding programs (Wilkins and Humphreys, 2003), and 

711 because perennial ryegrass is a densely tillered plant with leaves overlapping, this may cause 

712 shadows and scattering in reflectance spectrum. The increased spectral heterogeneity of 
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713 neighboring pixels within ground cover classes often leads to an inconsistent classification 

714 (Whiteside et al, 2011). This can be overcome by averaging pixel number (e.g. 2x2-4 pixels) in 

715 image analysis pipeline, which is available with modern image analysis algorithms. Therefore, 

716 alternative learning algorithms such as an object-based image analysis (OBIA) may require 

717 extracting more accurate phenomic data for pasture phenotyping. 

718

719 6.2.3 Object-based image analysis for feature extraction 

720 An object-based image analysis was developed in the 1970s for remote sensing studies in 

721 the Alpine forest environment (De Kok et al, 1999). However, the initial application was limited 

722 by hardware, software, and poor resolution of images (Flanders et al, 2003). In the process of 

723 OBIA, image pixels cluster together into vector objects, based on their spectral, textural and 

724 contextual information (Figure 6) (Yan et al, 2006). 

725

726

727

728

729

730

731

732

733

734

735

736

737 Figure 6. The process of image analysis in high throughput phenotyping pipeline for phenomics 

738 data extraction; a) image preprocessing, b) image segmentation, c) image classification, and d) 

739 classified objects of RGB image for feature extraction; where the image was classified in two 

740 types of objects to demonstrate an object-based image analysis pipeline using "k-nearest 

741 neighbor" classification algorithm in eCognition developer 9.3.2 software. 
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742

743 Image segmentation is a preliminary step in the OBIA. Image segmentation splits images into 

744 homogeneous logical partitions based on properties of pixels such as compactness, shape, and 

745 scale and knowledge about features of interest (Tan, 2016). After image segmentation, each 

746 logical particle is classified into classes on the basis of one or more statistical properties of the 

747 contained pixels (Perez et al, 2017). This means that all pixels within a segment are assigned to a 

748 class, eliminating problems associated with pixel-based approaches. Several studies have 

749 confirmed the superiority of OBIA over pixel-based classifications, especially in heterogeneous 

750 agricultural landscapes (Yan et al, 2006). As such, OBIA may have potential to extract phenomic 

751 features such as ground cover, plant number and senescent fraction to assess persistence of 

752 perennial ryegrass. Application of machine learning scripts such as k-NN (k-nearest neighbor), 

753 support vector machine (SVM) in OBIA optimise the accuracy of phenomics feature extraction 

754 (Perez et al, 2017).

755

756 6.2.4 Machine Learning approaches for phenomics feature extraction   

757 Image pixels show a non-linear relationship with a range of plant traits such as  leaf, fruit, 

758 plant organ, plant height, growth rate, and dry matter yield (Furbank and Tester, 2011). The 

759 standard image analysis pipelines depend on hand-engineered image processing parameters and 

760 have minimal throughput to extract these complex phenomic features from images causing a 

761 phenotyping bottleneck (Furbank and Tester, 2011; Walter et al, 2015). In the last two decades, 

762 machine learning techniques have become very popular in plant phenomics due to their 

763 robustness, accuracy and capability to handle more sophisticated "big data" (Liakos et al, 2018). 

764 Machine learning may be a supportive tool to combine phenomic, genomic and environment 

765 interactions to describe plant performance in a given environment (Dechter, 1986). Machine 

766 learning is expected to establish a prominent place in the future of image-based HTP under both 

767 controlled environment and field conditions. In terms of pasture persistence estimation, 

768 scientists cannot solely rely on linear function plant traits and may need to capture data on more 

769 complex traits such as root related traits or leaf morphology. Investigation of existing ML 

770 technology and their approaches in smart agriculture may enable the phenotyping of more 
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771 complex plant attributes for pasture persistence estimation. For instance, the reflectance spectra 

772 of senescent pasture and bare ground lack the unique spectral signature in the visible region 

773 (400–700 nm wavelength) of the reflectance spectrum (Aase and Tanaka, 1991). This makes the 

774 discrimination between soil and senescent pasture in RGB images difficult or nearly impossible 

775 using a standard image analysis algorithm. However, a recent study used advanced ML 

776 algorithms; the k-nearest neighbor (k-NN) to discriminate senescent perennial ryegrass from the 

777 bare ground for persistence estimation (Regression model for senescent fraction prediction, y1= 

778 0.858x + 2.9845, R2 = 0.65, SE = 3.08; y2= 1.5207x + 2.73, R2 = 0.71, SE = 4.07; where y1 is visual 

779 senescent fraction, y2 is dry matter percentage of senescent fraction and x  is k-NN based 

780 senescent fraction) (Jayasinghe et al, 2020). In the k-NN analysis, RGB images are segmented into 

781 small equal partitions (1pixel x 1pixel) and classified according to the relationship of its k-NN with 

782 training samples (Figure 3.).

783

784 7. Phenomics data modelling 

785 The current and future image-based platforms generate terabytes of information. Therefore, 

786 data modelling needs to become an essential framework for plant phenomics to develop 

787 hypotheses allowing multi-scale interpretations of features extracted from images (Tardieu et al, 

788 2017). Due to the precision of image-based HTP, a phenomics pipeline may allow the extraction 

789 of multiple traits that contribute to pasture persistence to be measured at high temporal and 

790 spatial resolution. The data modelling can be used to identify the features most responsible for 

791 pasture persistence estimation in breeding trials. For instance, a recent study showed that an 

792 empirical model developed using features generated from airborne multispectral data and a 

793 machine learning modelling framework offers an excellent prospect for pasture dry matter yield 

794 prediction (manual dry matter vs.  ML-based - Lin’s concordance values > 0.8, root mean squared 

795 error < 25%) (Karunaratne et al, 2020). Moreover, a machine learning technique, Cubist was used 

796 to analyse canopy spectra to predict perennial ryegrass nutritive characteristics, which may 

797 speed up the process of pasture nutritive value estimation under field conditions (Laboratory 

798 data vs. ML-based - R2 = 0.49-0.82, Lin’s concordance values = 0.68-0.89) (Smith et al, 2020). 

799 Invasion of weeds and less productive species may reduce dry matter production in grazing 
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800 systems and important pasture nutrient concentration of an animal intake such as crude protein 

801 (CP) acid detergent fibre (ADF) (Hume and Sewell, 2014). Therefore, the model developed in 

802 these recent studies could be adapted to monitor the expression of persistence of a sward. 

803 Perennial ryegrass adapts to manage biotic and abiotic stressors via changing morphological 

804 traits and adjusting their physiological behaviour (Waller and Sale, 2001). Perennial ryegrass may 

805 show complex interactions between genotypes, endophyte and environment at different scales 

806 to manage the plant development and mortality. The interactions between these three factors 

807 are still unclear. Statistical dynamic models such as artificial neural network and support vector 

808 machines have been proven to be an efficient phenomic approach to identify abiotic and biotic 

809 effects on plant phenotypes using machine learning algorithms (Safa et al, 2019; van Eeuwijk et 

810 al, 2019; Castro et al, 2020). Implementation of modern data modelling techniques may help to 

811 find answers to unsolved queries related to pasture persistence. 

812

813 8. Challenges of image-based HTP for pasture breeding   

814 Over the past few decades, plant phenomics has seen significant improvements through 

815 development of novel sensors and sensor-bearing platforms for phenotyping a wide range of 

816 traits, and biophysical processes. However, data handling and processing remain major 

817 challenges when translating sensor information into phenotyping knowledge (Yang et al, 2020). 

818 The primary aim of pasture phenotyping focusses on the quantification of biomass, nutritive 

819 characteristics and persistence at the single plant or population level under field conditions. Field 

820 conditions are heterogeneous and environmental factors make results difficult to interpret. 

821 However, indoor growth chambers or glasshouses are not the best substitutes for pasture 

822 phenotyping. Simulation and providing actual field conditions in a crossing room may create a 

823 real challenge for pasture breeders. Pasture breeding is driven by open pollination in field 

824 conditions, resulting in highly heterozygous populations. Therefore, understanding genotype x 

825 environment interaction using HTP is a challenging process due to the complexity of the perennial 

826 ryegrass genome (Araus and Cairns, 2013). 

827 Application of sensor-based technologies for pasture persistence estimation will be a robust 

828 process. However, it may require long-term, sustained records of sensor-based data. Phenomics 
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829 data, derived from airborne platforms are prone to have uncertainty due to changes in various 

830 environmental factors such as light conditions, solar radiation angle, atmospheric temperature, 

831 strong wind and air moisture (Ruicheng et al, 2018; Gebremedhin et al, 2019). Phenotyping 

832 technologies and protocols have no or inadequate capacity to assess some of the plant traits 

833 under field conditions (Araus and Cairns, 2013), and these traits may be vital factors for assessing 

834 pasture persistence. For instance, drought tolerance of forage grasses has a close relationship 

835 with both root morphology and physiology. However, available technology for root phenotyping 

836 are invariably destructive, time-consuming and their application for field phenotyping is limited 

837 or similar to ordinary traditional methods. 

838 Current image analysis software offers a wide range of image processing algorithms. 

839 However, there is a lack of information available on the comparison of performances of these 

840 algorithms (Madabhushi and Lee, 2016). Therefore, validation of image processing algorithms 

841 requires comparing image data with ground truth data, which can be based on numerical real 

842 physical measurements. Some pasture breeding trials may occupy a large area (hectares in size) 

843 and collecting ground truth data from large breeding trials may be challenging and expensive 

844 (Gebremedhin et al, 2019; Gebremedhin et al, 2020).In an image, some of the pixels may 

845 potentially have a completely different colour profile from neighboring pixels due to leaf overlap 

846 and false colouring (Chianucci et al, 2018), and this will lead to overfitting or classification bias in 

847 image analysis. Therefore, It is important to have a quality inspection step  in the image analysis 

848 pipeline using model cross/independent validation or appropriate algorithms, such as the 

849 watershed algorithm (Pahikkala et al, 2015; Wang et al, 2018). 

850 Application of HTP platforms in precision agriculture may be costly due to high initial 

851 purchase and maintenance costs associated with HTP platforms, that may compensate with the 

852 cost related with manual phenotyping methods in large scale breeding programs (Yang et al, 

853 2020). However, pasture farmers or small-scale pasture breeders may not be interested in using 

854 HTP platforms in their farm or breeding programs due to a low financial incentive. Moreover, 

855 applications of HTP platforms may require pre-training and knowledge, that may make use of 

856 HTP platforms problematic at the farm scale. Therefore, expenses associated with HTP platforms 
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857 may create significant challenges in precision agriculture to develop low-cost, user-friendly 

858 solutions for small scale applications. 

859

860 Conclusions 

861 Persistence estimation in pasture breeding depends on manual ground cover estimation or 

862 counting number of plants in a given area. These conventional methods are time consuming and 

863 subjective and not suitable for persistence estimation in large scale field trials. The investigation 

864 of sensor-based technology for pasture persistence estimation has commenced in pasture 

865 breeding programs. Phenotyping data from a recently developed persistence estimation tool 

866 showed a strong relationship with manual ground-based observations. However, this tool was 

867 not sensitive enough to phenotype complex traits such as sward composition in breeding plots. 

868 Expression of persistence in perennial ryegrass populations can be estimated by investigating 

869 fractions of ground cover, long-term annual dry matter production, intensity of weed ingression, 

870 pest attack and disease infection. With the rapid development in sensor technologies and image 

871 processing software, image-based HTP has been widely implemented in precision agriculture to 

872 discover solutions for compelling issues in crop and pasture, including yield prediction, ground 

873 cover estimation, pathogen and disease severity estimation, weed discrimination and yield and 

874 nutritive characteristics prediction. Image-based HTP approaches have encountered various 

875 challenges due to a lack of knowledge in image processing and limitations of sensors such as poor 

876 temporal and spatial resolution. However, existing airborne and ground based HTP approaches 

877 in precision agriculture offers opportunities for pasture phenotyping, and further development 

878 of these approaches may enable a precise sensor-based tool to assess persistence of perennial 

879 ryegrass in pasture breeding. The use of image-based HTP for persistence estimation may reduce 

880 the required time for releasing new cultivars achieving industry targets in an acceptable time 

881 frame. 
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1386 Figure legend

1387 Figure 5. Elements of high throughput phenotyping technologies that could be used for 

1388 estimating expression of pasture persistence under field conditions, where LiDAR is light 

1389 detection and ranging, and ML is machine learning. 
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1391 Figure 6. Scaling of high-throughput phenotyping platforms in precision agriculture, where (a) is 

1392 field scanning using a handheld sensor, (b) ground-fixed environmental sensor, (c) a phenotyping 

1393 ground vehicle, (d) a field scanning platform, (e) a phenotyping tower, (f)  an unmanned aerial 

1394 vehicle, (g) a low altitude phenotyping helicopter, (h) a phenotyping hot air balloon and (i) a 

1395 satellite remote sensing platform.   

1396

1397 Figure 7. Application of proximal RGB imaging for perennial ryegrass ground cover estimation in 

1398 pasture breeding plots; (a) A DSLR camera mounted on a tripod for RGB image acquisition (b) 

1399 RGB image (12 megapixels) from nadir position and (c) classified RGB image using a pixel-based 

1400 image analysis techniques, where red colour represents perennial ryegrass green fraction, 

1401 adapted from (Jayasinghe et al, 2019). 

1402

1403 Figure 8. The multispectral spectral image-based high-throughput pipeline for perennial ryegrass 

1404 ground cover estimation; (a, b) unmanned aerial vehicle and the ground control unit, (c) NDVI 

1405 orthomosaic, where the intensity of pseudocolour green represents NDVI variation of the 

1406 orthomosaic, (d) the ground cover classification map where green represents perennial ryegrass 

1407 ground cover; orange represents soil and weed cover within the experimental plot boundaries, 

1408 (adapted from Jayasinghe et al, 2019).

1409    

1410 Figure 5. (a) The acquisition of reflectance bands from spaceborne hyperspectral sensor (e.g. 

1411 Landsat-7 ETM; Enhanced Thematic Mapper), (b) typical spectral reflectance curves for soil, 

1412 water, and plants where colour and grey area represents locations of acquired spectral bands of 

1413 the hyperspectral sensor (e.g. Landsat-7 ETM+; data source for the graph from Roy et al., 2016).

1414

1415 Figure 6. The process of image analysis in high throughput phenotyping pipeline for phenomics 

1416 data extraction; a) image preprocessing, b) image segmentation, c) image classification, and d) 

1417 classified objects of RGB image for feature extraction; where the image was classified in two 

1418 types of objects to demonstrate an object-based image analysis pipeline using "k-nearest 

1419 neighbor" classification algorithm in eCognition developer 9.3.2 software. 
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