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ABSTRACT Staphylococcus aureus strain JKD6159 represents a prominent commu-
nity-acquired methicillin-resistant S. aureus (MRSA) clone in Australia. Here, we report
an improved assembly of the original S. aureus JKD6159 genome sequence. By using
deep sequencing with multiple technologies combined with carefully curated assem-
bly and polishing, we believe the assembly to contain zero errors.

S taphylococcus aureus strain JKD6159 is a methicillin-resistant clone of S. aureus (1)
belonging to the sequence type 93 (ST93) lineage, which was first reported in

Australia but is also found in Europe and New Zealand (2). This strain was isolated in
Australia in 2004 from a patient in whom it caused septicemia and multifocal abscesses
(3). While its complete genome sequence was originally published in 2010 (1) (NCBI
Assembly accession no. GCF_000144955.1), we have since resequenced and reassembled
JKD6159 using modern platforms and bioinformatic tools to produce a genome sequence,
which we believe to be free of errors.

The isolate was cultured overnight at 37°C (200 rpm) in Bacto Brain Heart Infusion
broth (Becton Dickinson), and DNA was extracted using GenFind V3 according to the man-
ufacturer’s instructions (Beckman Coulter) using lysozyme and proteinase K without size
selection. We generated 1,831,719 reads (5.59 Gbp, N50 of 4.2 kbp) using an R10.4 MinION
flow cell by using the SQK-NBD112.96 kit. The reads were basecalled and adapter trimmed
with Guppy v6.1.7 (dna_r10.4_e8.1_sup model). We performed quality control (QC) by dis-
carding reads ,6 kbp and the worst 10% of reads using Filtlong v0.2.0 (4), resulting in
135,671 reads (1.82 Gbp, N50 of 15.2 kbp). We also generated 6,844,242 paired-end 150-bp
reads (998 Mbp) on an Illumina NextSeq 500 using a Nextera XT preparation. Illumina QC
was performed using fastp v0.23.2 (5) with default parameters.

We assembled the long reads using Trycycler v0.5.3, following the “extra-thorough”
instructions in Trycycler’s documentation (using Canu v2.3 [6], Flye v2.9 [7], miniasm v0.3/
Minipolish v0.1.3 [8, 9], NECAT v20200803 [10], NextDenovo v2.5.0/NextPolish v1.4.0 [11,
12], and Raven v1.8.1 [13]). This produced three circular contigs, which were a 2,818,668-bp
chromosome, a 43,131-bp phage, and a 20,730-bp plasmid. We then ran Medaka v1.6.0
(14), which made 19 single base pair changes to the chromosome and no changes to the
phage or plasmid. Short-read polishing with Polypolish v0.5.0 (15) made 26 single base pair
changes to the chromosome and no changes to the phage or plasmid. We then ran POLCA
v4.0.9 (16), which made no changes, followed by FMLRC2 v0.1.7 (17), which changed seven
regions of the chromosome, but each was manually assessed in Integrative Genomics
Viewer (IGV) v2.13.0 (18), determined to be an introduced error, and rejected. For all tools,
default parameters were used except where otherwise noted.

The circular phage sequence was identical to an integrated phage in the chromo-
some. To verify that there were no differences between the circular and integrated
phage sequences, we produced a 100� Oxford Nanopore Technologies (ONT) read set
with Filtlong v0.2.0, which was 7,630 reads with an N50 of 40.6 kbp (long enough for
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most reads to uniquely align). We then repeated the entire assembly/polishing process,
which produced an identical result to our previous assembly. Since the integrated and cir-
cular phage sequences were confirmed to be identical, we removed the redundant circular
phage. To verify that no small plasmids were excluded, we performed a short-read-first
hybrid assembly using Unicycler v0.5.0 (19) but did not find any additional plasmids. Our
final assembly had a 2,818,670-bp chromosome and a 20,730-bp plasmid (pSaa6159) with
32.8% GC content. After annotation with the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) v6.2, the chromosome contained 2,701 coding sequences, 59 tRNAs, 19
rRNAs, 3 noncoding RNAs (ncRNAs), and 1 transfer-messenger RNA (tmRNA), and pSaa6159
contained 24 coding sequences.

To verify the assembly’s accuracy, we produced R9.4.1 MinION reads (SQK-RBK110.96
kit; 255,545 reads, 2.11 Gbp, N50 of 22.4 kbp, generated from the same DNA) and repeated
the process with Trycycler v0.5.3, Medaka v1.6.0 (181 changes), Polypolish v0.5.0 (49
changes), and POLCA v4.0.9 (one change verified in IGV), and the result was identical to
our R10.4-plus-Illumina assembly. Finally, we assembled the S. aureus JKD6159 genome
using previously sequenced PacBio RS II reads (20) (628,002 reads, 797 Mbp, N50 of 2.4
kbp) with Trycycler v0.5.3 and Quiver v2.3.3 (21) (24 changes), and the result was also iden-
tical. The fact that three alternative approaches (R10.4-plus-Illumina, R9.4.1-plus-Illumina,
and PacBio RS II) had no discrepancies supports our claim that this S. aureus JKD6159 as-
sembly contains zero errors.

Data availability. The revised genome sequence for S. aureus JKD6159 has been
deposited in GenBank with accession number GCF_000144955.2. Sequencing data are
available on SRA (Illumina, accession number SRR21386014; ONT R10.4 raw, accession
number SRR21386013; ONT R10.4 basecalled, accession number SRR21386012; ONT
R9.4.1 raw, accession number SRR21386011; ONT R9.4.1 basecalled, accession number
SRR21386010; PacBio RS II raw, accession number ERR1213694; and PacBio RS II base-
called, accession number SRR21386009) and figshare (https://bridges.monash.edu/
articles/dataset/S_aureus_JKD6159_sequencing_data/21007033).
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