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Abstract— Extremum-seeking control is a powerful adaptive
technique to optimize steady-state system performance. To
this date, extremum-seeking control has mainly been used to
optimize plants with constant steady-state outputs, whereas
the case in which the steady-state outputs are time varying,
has received less attention. We propose an extremum-seeking
scheme for the optimization of nonlinear plants with periodic
steady-state outputs. Extremum-seeking control in this setting
is relevant in e.g. the scope of tracking and disturbance
rejection problems. We show that under certain assumptions
the proposed extremum-seeking controller design guarantees
that for an arbitrarily large set of initial conditions the steady-
state performance of the plant converges arbitrarily close to its
optimal value.

I. INTRODUCTION

Extremum-seeking control is an adaptive control approach
that optimizes a performance measure in terms of the steady-
state output of a stable or stabilized plant in real time
by automated tuning of the system parameters. In many
applications, only limited knowledge of the plant dynamics
is available and, hence, the steady-state output of the plant
(as a function of system parameters) is not analytically
known to the designer, but the output can only be measured.
The purpose of an extremum-seeking controller is to drive
the system parameters to their optimizing values, using
only output measurements of the plant. Because extremum-
seeking control is model free, it can be applied to many
different engineering domains, see e.g. [1]–[5].

Although extremum-seeking control has been used for
many decades, it was not until the last decade that local
stability and semi-global practical stability for an extremum-
seeking scheme with a general nonlinear plant were demon-
strated by Krstić and Wang [6] and Teel and Popović [7],
and Tan et al. [8], respectively. In the majority of the works
on extremum seeking, the steady-state output of the plant is
assumed to be constant, see e.g. [6]–[11]. However, in many
cases the performance of engineering systems is related to
time-varying behavior (think e.g. of tracking or disturbance
rejection problems). Examples are repetitive motion tasks in
high-tech motion systems, such as e.g. waferscanners [12],
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and the control of sawtooth instabilities in fusion tokamak
plasmas [13].

Wang and Krstić [14] designed an extremum-seeking
controller to minimize the amplitude of a sinusoidal steady-
state output using a detector. The detector contains high-pass
and low-pass filters to extract the amplitude of the sinusoidal
output. The plant and the amplitude detector can be regarded
as one system with the system parameters as input and the
detected amplitude as output (which is constant in steady
state). Hence, the same extremum-seeking method as for the
optimization of plants with constant steady-state outputs can
be used to minimize the detected amplitude. This method was
applied to instability control of a gas-turbine combustor and a
subsonic cavity flow [15], [16]. A similar method was applied
for mode matching in vibrating gyroscopes in [17]. Note that
the results in [14] are tailored to sinusoidal outputs, whereas
in the current paper we develop a more general framework
for performance optimization of arbitrary periodic outputs.

Guay et al. [18] developed an extremum-seeking control
scheme for the steady-state output optimization of a class
of differentially flat periodic nonlinear plants. Flatness is
exploited to compute one period of the steady-state output
of a plant. Extremum-seeking control is used to optimize the
computed output in real time. While the computed steady-
state output is optimized, asymptotically stable error dynam-
ics ensure that the actual output of the plant converges to the
computed steady-state output and, as a consequence, steady-
state performance is optimized. This method requires explicit
model knowledge on the relation between the parameters
and the steady-state output of the plant, which constrains its
applicability to typical extremum seeking problems where
the model is unknown. A similar approach is used in [19]
for the steady-state output optimization of a class of periodic
Hamiltonian systems.

The contribution of this paper is as follows. First, we
propose an extremum-seeking control method for steady-
state performance optimization of general nonlinear plants
with arbitrary periodic steady-state outputs without requiring
explicit knowledge of the relation between the parameters
and the steady-state output of the plant. Second, we present
a novel extremum-seeking controller with moving average
filter, which leads to an improved performance. Third, we
prove the semi-global practical asymptotic stability of the
performance-optimal solution.

II. PRELIMINARIES

The sets of real numbers and natural numbers (nonnegative
integers) are denoted as R and N, respectively. The sets of



real numbers larger than zero and larger than or equal to
zero are given by R>0 and R≥0, respectively. For the vectors
x, y ∈ Rn, we use the relations >, <, ≥, ≤ and = in the
elementwise sense, i.e., x > y denotes that xi > yi for all
i ∈ {1, 2, . . . , n}. Given two functions f, g : R → R, by
f ◦ g(·) we denote f(g(·)). A function α : R≥0 → R≥0 is
said to belong to the class K (α ∈ K) if it is continuous,
zero at zero, and strictly increasing. It is said to belong to
the class K∞ if it is of class K and unbounded (that is,
α(r) → ∞ as r → ∞). The following notation is adopted
from [20], [21]. Let td be a nonnegative real number. Given
a function q : R → Rn and t ∈ R, we define qd(t)(·) such
that qd(t)(τ) := q(t + τ) for all τ ∈ [−td, 0]. We say that
qd(t) ∈ C([−td, 0]; Rn), where C is the Banach space of
continuous functions mapping the interval [−td, 0] to Rn.
Note that qd(t) can be considered as the trajectory of q for the
interval [t−td, t]. We define (when it makes sense) |qd(t)| :=
maxs∈[t−td,t] |q(s)|, where | · | denotes the Euclidean norm.

We consider a parameterized family of n ∈ N intercon-
nected systems:

ẋi = fi(t, x1d, x2d, . . . , xnd, ε), t ≥ 0,
xi(t) = ξi(t), t ∈ [−td, 0],

(1)

with states xi ∈ Rvi , vi ∈ N, for all i ∈ {1, 2, . . . , N}
and parameter vector ε ∈ Rk>0. The solutions xi(t) sat-
isfy the initial conditions ξi(t) for t ∈ [−td, 0]. For
x(t) := [xT1 (t), xT2 (t), . . . , xTN (t)]T , we denote x+(t) :=
[|x1(t)|, |x2(t)|, . . . , |xN (t)|]T . We state the following defi-
nition of semi-global practical asymptotic stability (SGPAS)
for systems of the form (1).

Definition 1
The interconnected system in (1) with parameter vector
ε := [ε1, ε2, . . . , εk]T is said to be semi-globally practically
asymptotically stable (SGPAS), if for any ρ0, ν ∈ RN>0 the
following holds. There exists an ε∗1 ∈ R>0, such that, for
the sequence j = 2, 3, . . . , k, for all εj−1 ∈ (0, ε∗j−1) there
exist ε∗j = ε∗j (ε1, ε2, . . . , εj−1) ∈ R>0, such that for any
εl ∈ (0, ε∗l ), ∀l ∈ {1, 2, . . . , k} and for all x+

d (0) ≤ ρ0 the
solutions xi(t), ∀i ∈ {1, 2, . . . , N}, of (1) are well-defined
for all t ≥ 0 and satisfy the following properties:

1) uniform boundedness: supt≥0 x
+(t) ≤ C;

2) convergence: lim supt→∞ x+(t) ≤ ν,
where C = C(ρ0, ε) ∈ RN>0 is a constant vector.

III. EXTREMUM-SEEKING PROBLEM FOR PERIODIC
STEADY STATES

In this section, we formulate the extremum-seeking control
problem for periodic steady-states. Consider a nonlinear
plant of the following form:

ẋ = f(x, u, θ, w(t)),
y = h(x,w(t)),

(2)

where x ∈ Rn, u ∈ Rm, y ∈ R are respectively the
state, the control input and the output, where w(t) ∈ Rl are
input disturbances, and where θ ∈ R is a scalar parameter.
The function f : Rn × Rm × R × Rl → Rn is twice

continuously differentiable in x, u and θ, and continuous in
w(t). The function h : Rn × Rl → R is twice continuously
differentiable in x and continuous in w(t). The disturbances
w(t) correspond to the solution of an exosystem:

ẇ = ϕ(w), (3)

where ϕ : Rl → Rl is a locally Lipschitz function. Moreover,
we assume that the following assumptions hold.

Assumption 1
( [22]) All solutions of the system (3) are defined for all t ∈ R
and for every ρw0 ∈ R>0 there exists a ρw ∈ R>0 such that
|w(0)| ≤ ρw0 ⇒ |w(t)| ≤ ρw, for all t ∈ R.

Assumption 2
For any initial condition w(0), the solution of the system (3)
is periodic with a known constant period Tw ∈ R>0, yielding
w(t+ Tw) ≡ w(t) for all t ∈ R.

Consider a state-feedback controller of the following form:

u = α(x, θ), (4)

where α : Rn×R→ Rm is twice continuously differentiable
in x and θ. We assume that we can find a stabilizing
controller (4) such that the following assumption holds.

Assumption 3
For all fixed θ ∈ R, there exists a unique, bounded on R,
uniformly globally asymptotically stable (UGAS) steady-state
solution x̄θ,w(t) of the stabilized plant in (2),(4). Moreover,
there exists a map M : R × Rl → Rn, twice continuously
differentiable in θ and continuous in w(t), such that

x̄θ,w(t) = M(θ, w(t)), (5)

for fixed values of θ ∈ R and all t ∈ R. In addition, there
exists functions αx1, αx2 ∈ K∞, αf ∈ K and a (smooth)
Lyapunov function Vx(x̃) such that

αx1(|x̃|) ≤ Vx(x̃) ≤ αx2(|x̃|), (6)

dVx
dx̃

f̃ (x̃,M(θ, w(t)), θ, w(t)) ≤ −αf (|x̃|), (7)

for all fixed θ ∈ R and all t ≥ 0, where x̃ := x −
M(θ, w(t)) is the difference between the state x and the
steady-state solution for fixed θ given by the map M , and
where f̃ (x̃,M, θ, w(t)) := f(x̃+M,α(x̃+M, θ), θ, w(t))−
f(M,α(M, θ), θ, w(t)).

Remark 1
The question may rise for which classes of systems such a
unique UGAS steady-state solution indeed exists. Suppose
that θ ∈ R is fixed, that Assumption 1 holds and that the
stabilized plant in (2),(4) is uniformly convergent, see [22],
[23] for a definition of uniform convergence. Under these
conditions, there exists a steady-state map M as in (5) and
x̄θ,w(t) is UGAS, see [22, Theorem 2]. For some classes
of systems (2) it is possible to design a controller of the
form (4) such that the stabilized plant in (2),(4) is uniformly
convergent, see [23].



Remark 2
Assumption 3 can be seen as the counterpart of the assumption
on a unique globally asymptotically stable equilibrium point
in the scope of extremum-seeking control in an equilibrium
setting, see e.g. [8], or the assumption of a stable limit cycle
in the case of limit-cycle minimization in [14].

Next, we introduce a useful property of x̄θ,w(t).

Property 1
Suppose that Assumptions 2 and 3 hold and θ ∈ R is
fixed. Then, the corresponding steady-state solution x̄θ,w(t)
is periodic with period Tw ∈ R>0.

Proof: Using the uniqueness and UGAS properties of
the steady-state solution in Assumption 3, the proof of the
property follows similar steps as the proof of [23, Property
2.23].

Note that from (5) and Property 1, it follows that the
output x̄θ,w(t) of the map M(θ, w(t)) is Tw-periodic if
Assumptions 2 and 3 hold and θ ∈ R is fixed. In addition,
from (2) we conclude that if x̄θ,w(t) = M(θ, w(t)) and
w(t) are Tw-periodic, the steady-state output y(t) = ȳθ,w(t)
of the plant is also Tw-periodic. Hence, if Assumptions 2
and 3 hold, the steady-state output ȳθ,w(t) is Tw-periodic
for fixed θ.

We aim to find the (fixed) value of θ ∈ R that optimizes,
in a certain sense, the steady-state output ȳθ,w(t) of the
stabilized plant in (2),(4). In order to do so, we design a
cost function that evaluates the steady-state output of the
stabilized plant in (2),(4) for different values of θ ∈ R and
introduce the following performance measures:

Lp(yd(t)) :=
(

1
Tw

∫ t

t−Tw
|y(τ)|pdτ

) 1
p

=
(

1
Tw

∫ 0

−Tw
|yd(t)(τ)|pdτ

) 1
p

,

L∞(yd(t)) := max
τ∈[t−Tw,t]

|y(τ)| = max
τ∈[−Tw,0]

|yd(t)(τ)|,

(8)

with p ∈ [1,∞). Note that Lp and L∞ in (8) are re-
spectively the Lp-norm and the L∞-norm for the time
interval [t − Tw, t]. Furthermore, note that Lp contains a
distributed delay and that L∞ contains a time-dependent
delay, namely the value of τ for which the maximum is
attained generally changes with time t. We use one of the
performance measures in (8) in the design of the following
cost function:

Qi(yd(t)) := g ◦ Li(yd(t)), i ∈ [1,∞], (9)

where g : R≥0 → R is a twice continuously differentiable
function chosen by the designer. We say that the steady-state
performance of the stabilized plant in (2),(4) is optimized if
the steady-state output of the cost Qi in (9) is maximized.
The value of the cost function in (9) will be referred to as the
performance of the stabilized plant in (2),(4) and is denoted
by q ∈ R, i.e., q(t) = Qi(yd(t)) with i ∈ [1,∞].

Remark 3
Li(yd(t)) is constant if y(t) is Tw-periodic. Hence, assuming
that Assumptions 2 and 3 hold and θ is fixed, from (2), (9)
and Property 1, it follows that the steady-state performance
q = q̄θ,w is constant for each fixed value of θ ∈ R.

The stabilized plant in (2),(4) and the cost function in (9) can
be considered as one lumped plant with the system parameter
θ and the disturbances w(t) as input and the performance q of
the plant as output. Combining the equations of the stabilized
plant in (2),(4) and the cost function in (9), we have

ẋ = f(x, α(x, θ), θ, w(t)),
q = Ji(xd, wd(t))

(10)

with

Ji(xd, wd(t)) := Qi ◦h(xd, wd(t)) = g◦Li ◦h(xd, wd(t))
(11)

with i ∈ [1,∞]. Herein, for the sake of simplicity we adopted
the notation yd = h(xd, wd(t)). We will refer to Ji in
(11) as the performance function. Considering fixed θ, we
have that the steady-state solution of the stabilized plant in
(2),(4) satisfies x̄θ,w(t) = M(θ, w(t)), see Assumption 3. By
adopting Assumptions 2 and 3, we have that the steady-state
performance q̄θ,w of the stabilized plant in (2),(4) is constant
for all fixed θ ∈ R, see Remark 3. By replacing x in (11)
with the map M(θ, w(t)) in (5), we obtain that the relation
between fixed values of the parameter θ and the steady-state
performance q̄θ,w is given by the following static map:

Jsta,p(θ) := g ◦
(

1
Tw

∫ Tw

0

|h(M(θ, w(τ)), w(τ))|pdτ
) 1
p

,

Jsta,∞(θ) := g ◦
(

max
τ∈[0,Tw]

|h(M(θ, w(τ)), w(τ))|
)
.

(12)

with p ∈ [1,∞), where we used the definition of Li in
(8) and the periodicity of w(t) and M(θ, w(t)) to obtain (12).

We assume that the output function h in (2), the map
M in (5) and/or the input w(t) are unknown1 to the
designer. Note that this implies that the static map Jsta,i in
(12) is also unknown. Nonetheless, we adopt the following
assumption on the existence of a unique maximum of Jsta,i.

Assumption 4
Consider some i ∈ [1,∞]. It is assumed that the static map
Jsta,i in (12) and its first two derivatives with respect to θ are
continuous and bounded on compact sets of θ. Moreover, it is
assumed that there exists a function αJ ∈ K and a constant
θ∗ ∈ R, such that

dJsta,i
dθ

(θ)[θ − θ∗] ≤ −αJ(|θ − θ∗|), (13)

for all θ ∈ R. In other words, for θ = θ∗ the map Jsta,i
achieves a unique maximum in R.

1Note that the period Tw of the unknown input w(t) is assumed to be
known, since w(t) satisfies Assumption 2.



Note that the static map Jsta,i in (12) relates the (fixed)
system parameter θ to the steady-state performance q̄θ,w of
the stabilized plant in (2),(4). Consequently, by finding the
maximum of the map Jsta,i at θ = θ∗, we find the value
of θ ∈ R that maximizes the steady-state performance of
the stabilized plant. Because the cost function is chosen
such that the steady-state output ȳθ,w(t) of the stabilized
plant is optimized if its performance q̄θ,w is maximized,
we obtain that the steady-state output ȳθ,w(t) is optimized
if θ = θ∗. Hence, we can rephrase the objective of finding
the value of θ ∈ R that optimizes the steady-state output
ȳθ,w(t) by finding the value of θ ∈ R that corresponds to
the maximum of the static map Jsta,i, i.e, by finding θ = θ∗.

In the next section, we introduce an extremum-seeking
controller that drives the system parameter θ ∈ R towards
its output-optimizing value θ∗ using an estimated gradient
of the static map Jsta,i. Moreover, it will be shown in
Section V that θ converges arbitrarily close to its optimal
value θ∗ by proper tuning of the extremum-seeking
controller proposed in Section IV.

IV. EXTREMUM-SEEKING CONTROLLER DESIGN

Consider the extremum-seeking scheme in Fig. 1. In the
spirit of [24], the extremum-seeking scheme consists of the
lumped plant in (10) and an extremum-seeking controller
consisting of a derivative estimator and an optimizer. The
perturbation-based derivative estimator produces an estimate
of the gradient of the static map Jsta,i in (12). Subsequently,
this estimated gradient is used by the optimizer to steer
the nominal value θ̂ of the parameter θ towards the output-
optimizing value θ∗, with θ = θ̂+a sin(ωt), where a sin(ωt)
is the sinusoidal perturbation used by the derivative estimator.
The optimizer is given by

˙̂
θ = Ke, (14)

where e is the estimate of the gradient dJsta,i
dθ (θ̂). Here,

we propose a novel gradient estimator based on a moving
average filter of the following form:

e =
ω

aπ

∫ t

t− 2π
ω

q(τ) sin(ω[τ − φ])dτ. (15)

Using θ = θ̂+a sin(ωt), (10), (14) and (15), the closed-loop
dynamics are given by

ẋ = f(x, α(x, θ̂ + a sin(ωt)), θ̂ + a sin(ωt), w(t)),

˙̂
θ =

ωK

aπ

∫ t

t− 2π
ω

Ji(xd(τ), wd(τ)) sin(ω[τ − φ])dτ,
(16)

with i ∈ [1,∞] and θ̂ ∈ R, where a, ω,K ∈ R>0 are
controller parameters and φ ∈ R≥0 is a constant. Note
that we have xd(t)(τ) := x(t + τ) for all τ ∈ [−td, 0],
where the maximal delay of the extremum-seeking scheme is
td = Tw+ 2π

ω ; the delay Tw is introduced by the performance
measure in (8) while the delay 2π

ω is introduced by the
moving average filter in (15).

q

×+ ω
2π

∫ t
t− 2π

ω

Stabilized plant

Extremum-seeking controller

ẋ = f(x, α(x, θ), θ, w(t))

y = h(x,w(t))

a sin(ωt) 1
a sin(ω[t− φ])

w(t)

θ

θ̂
2˙̂

θ = Ke
e

Derivative estimator

Qi(yd)
y

Cost function

Lumped plant

Optimizer

Fig. 1: Extremum-seeking scheme in (16).

Remark 4
The extremum-seeking controller in Fig. 1 is comparable to
the ”first-order” extremum-seeking controller in [8]. However,
unlike the ”first-order” extremum-seeking controller in [8],
the extremum-seeking controller in Fig. 1 contains a moving-
average filter. The moving-average filter is an alternative for
the ”higher-order” extremum-seeking controllers with low-
pass filter and/or high-pass filter as in [6], [8]. Note that due
to the perturbation signal a sin(ωt) the performance q of the
plant contains periodic oscillations with frequency ω

2π (and
higher-order harmonics), see e.g. [24]. Contrary to the use
of low-pass and/or high-pass filters, a moving average filter
filters out these oscillations completely, which results in a
more accurate gradient estimate e. A second difference is that
the sinusoidal perturbation signals a sin(ωt) and 1

a sin(ω[t −
φ]) in Fig. 1 have a different phase. The phase shift ωφ is
introduced to compensate for the delays introduced by the
plant dynamics and the performance measure Li in (8), which
is part of the performance function Ji in (11). A similar phase
shift is introduced in [25].

For analysis purposes, we select

K = a2ωδ, (17)

where δ ∈ R>0 is a constant. In addition, the following
change of variables is introduced:

x̃ := x−M(θ, w(t)) and θ̃ := θ̂ − θ∗, (18)

such that θ = θ̂+ a sin(ωt) = θ̃+ θ∗ + a sin(ωt), where M
and θ∗ are defined in (5) and Assumption 4, respectively. We
will apply the change of variables in (18) to the extremum-
seeking scheme in (16). To prevent lengthy expressions we
will not substitute θ = θ̃+ θ∗ + a sin(ωt) and we will write
M instead of M(θ, w(t)). Using (17) and (18), the system
equations in (16) are transformed to

dx̃

dt
= f̃ (x̃,M, θ, w(t))− ∂M

∂θ

[
dθ̃

dt
+ aω cos(ωt)

]
,

dθ̃

dt
=
aω2δ

π

∫ t

t− 2π
ω

Ji(x̃d(τ) +Md(τ), wd(τ))s(τ)dτ,

(19)



with i ∈ [1,∞], f̃ (x̃,M, θ, w(t)) := f(x̃ + M,α(x̃ +
M, θ), θ, w(t))−f(M,α(M, θ), θ, w(t)) as in Assumption 3,
Md(t) := M(θd(t), wd(t)) and s(t) := sin(ω[t− φ]).

V. STABILITY ANALYSIS

We next present conditions under which the extremum-
seeking closed-loop dynamics in (x̃, θ̃)-coordinates in (19) is
SGPAS as defined in Definition 1, where the corresponding
parameter vector is given by ε = [a, ω, δ]T , see Theorem 1
below. Furthermore, we will show that this stability property
is directly related to the achievement of the performance
optimization objective. Note that the dynamics of the closed-
loop system in (19) are essentially different than those of a
comparable closed-loop system for the equilibrium case in
e.g. [6], [8] due to the delays introduced by the performance
measure in (8) and the moving average filter (15) of the
extremum-seeking controller.

Theorem 1
Suppose that Assumptions 1, 2, 3 and 4 hold. Then, the
closed-loop dynamics of the extremum-seeking scheme in
(19) is SGPAS, where ε = [a, ω, δ]T .

Proof: For the proof, see [26].
Let us make explicit the implications of this result in

terms of achieving the performance optimization objective.
Under the conditions of Theorem 1, the state x of the
stabilized plant in (2),(4) converges to an arbitrarily small
neighborhood of the steady-state solution given by the map
M in (5) for sufficiently small a, ω, δ ∈ R>0 since x =
x̃ + M(θ, w(t)) and x̃ converges to an arbitrarily small
neighborhood of the origin, see Definition 1 of SGPAS. Then,
from the continuity of h in (2), it follows that the output y of
the plant converges to a small neighborhood of the steady-
state output for sufficiently small a, ω, δ ∈ R>0.

Note that from Theorem 1 and θ̃ := θ̂− θ∗ in (18), it also
follows that the nominal value θ̂ of the parameter θ converges
to an arbitrarily small neighborhood of the performance-
optimizing value θ∗ for sufficiently small a, ω, δ ∈ R>0.
Moreover, from Theorem 1 and θ = θ̃ + θ∗ + a sin(ωt) =
θ̂+a sin(ωt), it also follows that θ converges to an arbitrarily
small neighborhood of the performance-maximizing (and
output-optimizing) value θ∗ for sufficiently small a, ω, δ ∈
R>0. Note that here we use that a sin(ωt) becomes arbitrarily
small for sufficiently small a ∈ R>0.

Hence, it follows that the output y of the stabilized plant
in (2),(4) converges arbitrarily close to the optimal steady-
state output for sufficiently small a, ω, δ ∈ R. Using (17),
this implies that the output y converges arbitrarily closely to
the performance optimizing output for sufficiently small pa-
rameters a, ω,K ∈ R>0 of the extremum seeking controller.

VI. ILLUSTRATIVE EXAMPLE

To illustrate the proposed extremum-seeking method, con-
sider a plant of the form:

ẋ1 = x2, ẋ2 = −25x1 − b(θ)x2 + w1(t) (20)

with y = x1 and where b(θ) : R → R>0 is a nonlinear
characteristic given by

b(θ) = 10 + 5(θ − 10)2. (21)

In (20), w1(t) is part of the solution of the exosystem

ẇ1 = vw2, ẇ2 = −vw1, (22)

with v = 80 and initial conditions w1(0) = 0 and w2(0) =
20. The solution of the exosystem in (22) is then given by

w1(t) = 20 sin(80t), w2(t) = 20 cos(80t). (23)

Note that for fixed values of θ ∈ R, the plant in (20)-(21)
can be regarded as a linear system for which the steady-state
solution is given by

x̄θ,w(t) = M(θ, w(t)) =
[

R1(θ)w1(t) +R2(θ)w2(t)
80R1(θ)w2(t)− 80R2(θ)w1(t)

]

(24)

with

Ri(θ) =
ri(θ)

63752 + 802b2(θ)
, i = 1, 2, (25)

with r1(θ) = −6375 and r2(θ) = −80b(θ). To find the value
of θ ∈ R that maximizes the amplitude of the steady-state
output of the plant in (20)-(21), we introduce:

Q∞(yd) = L∞(yd), (26)

where L∞ is defined in (8). Note that for fixed θ ∈ R,
the steady-state performance q = q̄θ,w of the plant (with
q = Q∞(yd)) is equal to the amplitude of the steady-state
output y = ȳθ,w of the plant. Using (23)-(26), the relation
between fixed values of the system parameter θ and the
steady-state performance q̄θ,w of the plant is given by the
static map Jsta,∞ (i.e. q̄θ,w = Jsta,∞(θ)), which is defined
as Jsta,∞(θ) = 20/(

√
63752 + 802b2(θ)). Note that the

extremum of the map is located at θ = θ∗ = 10, see Fig. 2.
The extremum-seeking controller in Fig. 1 is used to

optimize the steady-state performance of the plant in (20)-
(21). Simulation results in Fig. 2 (in black) show that the
system parameter θ converges to a small neighborhood of
the performance-maximizing value θ∗ = 10. As θ converges
to θ∗, the performance q of the plant converges to a small
neighborhood of the optimal steady-state performance indi-
cated by the maximum of the static map Jsta,∞, i.e. the
amplitude of the steady-state output y is maximized.

Fig. 2 also shows simulation results (in grey) for a similar
extremum-seeking scheme, where the moving average filter
is replaced by a first-order low-pass filter with (properly
tuned) angular cutoff frequency ωl = 1.1, see [6], [8]. Fig. 2
clearly shows that using a moving average filter results in
a better estimate e of the gradient dJsta,i

dθ (θ̂). The main
reason for this fact is that the moving average filter filters
out all oscillations with frequency ω

2π (and higher-order
harmonics), while the low-pass filter does not, as mentioned
in Remark 4. Moreover, using the moving average filter
results in a smaller estimation delay compared to using the
low-pass filter. Because the moving average filter provides
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Fig. 2: Simulations results of the extremum-seeking scheme with
moving average filter (black) and low-pass filter (grey), for
a = 0.5, K = 4 × 103, ω = 15 and φ = 0.02, with
initial conditions θ̂(0) = 20 and x1d(0)(τ) = −5.4×10−4,
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a better gradient estimate dJsta,i
dθ (θ̂), the system parameter θ

converges faster to the optimal value θ∗ when the moving
average filter is used, see Fig. 2.

VII. CONCLUSIONS

In this paper, we have presented an extremum-seeking
control method for steady-state performance optimization
of general nonlinear plants with periodic steady-state out-
puts. This methodology allows to consider arbitrary periodic
steady-state system outputs without requiring explicit knowl-
edge of the relation between the parameters and the steady-
state output of the system. Furthermore, we have presented
a novel extremum-seeking controller with moving average
filter. Moreover, conditions have been presented under which
semi-global practical asymptotic stability of the closed-loop
system can be guaranteed, which implies the achievement of
the performance optimization using extremum seeking.
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