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44 Abstract

45 Earth’s rapidly warming climate is propelling us towards an increasingly fire-prone future. 

46 Currently, knowledge of the extent and characteristics of animal mortality rates during fire 

47 remains rudimentary, hindering our ability to predict how animal populations may be 

48 impacted in the future. To address this knowledge gap, we conducted a global systematic 

49 review of the direct effects of fire on animal mortality rates, based on studies that 

50 unequivocally determined the fate of animals during fire. From 31 studies spanning 1984–

51 2020, we extracted data on the direct impacts of fire on the mortality of 31 species from 23 

52 families. From these studies, there were 43 instances where direct effects were measured 

53 by reporting animal survival from pre- to post-fire. Most studies were conducted in North 

54 America (52%) and Oceania (42%), focused largely on mammals (53%) and reptiles (30%), 

55 and reported mostly on animal survival in planned (82%) and/or low severity (70%) fires. We 

56 found no studies from Asia, Europe, or South America. Although there were insufficient data 

57 to conduct a formal meta-analysis, we tested the effect of fire type, fire severity, animal 

58 body mass, ecological attributes, and class on survival. Only fire severity affected animal 

59 mortality, with a higher proportion of animals being killed by high than low severity fires. 

60 Recent catastrophic fires across the globe have drawn attention to the plight of animals 

61 exposed to wildfire. Yet, our systematic review suggests that a relatively low proportion of 

62 animals (mean predicted mortality [95% CI] = 3% [1–9%]) are killed during fire. However, our 

63 review also underscores how little we currently know about the direct effects of fire on 

64 animal mortality, and highlights the critical need to understand the effects of high severity 

65 fire on animal populations.
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66 KEYWORDS Death, disturbance, mega-fire, Pyrocene, survival, systematic review, tracking, 

67 wildfire

68 1 | INTRODUCTION

69 Fire has shaped the diversity of life on Earth for hundreds of millions of years (Bowman et 

70 al., 2009; He et al., 2019). Many terrestrial ecosystems are fire-prone, and fire shapes the 

71 structure, function and composition of these systems (Bond & Keeley, 2005; Bowman et al., 

72 2009; He et al., 2019; Pausas & Keeley, 2009). Some plants and animals benefit from fire (He 

73 et al., 2019) and the environmental heterogeneity it creates (Parr & Andersen, 2006). 

74 However, global fire regimes are changing (Bowman et al., 2020). Climate change is rapidly 

75 heating and drying the planet (Karl & Trenberth, 2003), and ignition patterns and fuel 

76 structures are changing (Pausas & Keeley, 2021), resulting in increased wildfire frequency 

77 and intensity (Di Virgilio et al., 2019; Jolly et al., 2015; Wu et al., 2021). Consequently, 

78 changing fire regimes threaten >1,000 animal species with extinction worldwide (Kelly et al., 

79 2020). 

80 Fire influences animal populations via direct and indirect effects (otherwise termed 

81 first and second order effects, respectively; Engstrom, 2010). The direct effects of fire 

82 involve mortality during the fire event (Whelan et al., 2002). As fire passes through a 

83 landscape, animals within the perimeter of the fire die if they are unable to flee or seek 

84 adequate shelter (i.e., via smoke inhalation, radiant heat or being directly consumed by 

85 flames) (Nimmo et al., 2019, 2021). The capacity to survive fire likely depends on animal 

86 traits (e.g., evolutionary exposure to fire [Nimmo et al., 2021; Pausas & Parr, 2018]; ability 

87 to flee [Nimmo et al., 2019]; ecological attributes, i.e., use of and access to non-flammable 

88 refugia), aspects of the environment (e.g., refuge availability [Banks et al., 2017], fuel loads 

89 and moisture), and fire behaviour (e.g., fires of higher severity [Whelan et al., 2002]) (Figure 

90 1: conceptual framework). The indirect effects of fire are those related to the changes that 

91 fire brings about through the combustion of habitat, the resulting loss of food and shelter, 

92 and the successional dynamics that fire initiates (Engstrom, 2010). Population declines 

93 immediately following fire are presumed to involve a combination of direct mortality and 

94 emigration, or reduced survival due to increased rates of predation and resource limitations 

95 in the post-fire landscape (Engstrom, 2010; Whelan et al., 2002). 
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96 Although fire affects 300–500 million hectares of land globally each year (Forkel et 

97 al., 2019), there is surprisingly little knowledge of fire as an agent of direct animal mortality 

98 (Nimmo et al., 2021). Yet, interest in the topic has increased in recent years following 

99 megafires—fires that are extreme in size (e.g., >10,000 ha) and severity (Stephens et al., 

100 2014)—in Australia, California, Siberia, and the Amazon (Barlow et al., 2020; Escobar, 2019; 

101 Nolan et al., 2020; van Eeden et al., 2020). The unprecedented scale of these recent fires 

102 (Boer et al., 2020; Duane et al., 2021) resulted in substantial proportions of many species’ 

103 ranges—and in some instances entire geographic ranges—lying within the perimeter of a 

104 single fire (Ward et al., 2020). Understanding the likely proportional population toll of such 

105 fires is important in order to reassess the conservation status of species (Legge et al., 2020; 

106 Wintle et al., 2020), to help prioritise conservation management actions in the aftermath 

107 (Geary et al., 2021; Wintle et al., 2020), and to begin to grapple with the likely timescales of 

108 recovery. It is, therefore, timely to appraise what we know about the direct effects of fire on 

109 animal populations. 

110 To address this knowledge gap, we systematically reviewed empirical studies that 

111 examined the impact of fire on the mortality rates of animals globally. Only individual 

112 animals that were able to be tracked continuously through the passage of fire—typically via 

113 radio-tracking—qualified for inclusion in our systematic review. These studies can detect 

114 fire-induced mortality with high certainty, whereas studies of changes in animal population 

115 size before/after fire typically do not differentiate between survival/mortality and 

116 immigration/emigration, creating uncertainty regarding the proportion of animals that 

117 survived the passage of fire (i.e., vs. animals that emigrated outward from the firegrounds 

118 immediately prior to or following the fire’s passage). Likewise, some recent studies have 

119 documented the – sometimes very high – numbers of animals killed in fires (Tomas et al., 

120 2021), but we do not directly consider such studies because they lack a before-after 

121 component, so cannot provide evidence of proportional population losses, or survival rates 

122 of individual animals, in fire.

123

124 Our principal objectives were to:

125 1. Characterise and summarise the direct effects of fire on animal mortality rates and 

126 analyse the extracted data to clarify which traits of the animals and fires are 

127 important in explaining variation in the direct impacts of fire; and
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128 2. Identify the major knowledge gaps regarding how fires directly cause animal 

129 mortality and suggest how these may be addressed by future research. 

130

131

132 2 | MATERIALS AND METHODS

133 2.1 | Systematic review

134 Our study involved a systematic review of the literature investigating the direct effects of 

135 fire on the mortality of animals to identify broad publication trends and, for a subset of 

136 these studies, analyses of whether traits of the animals and/or fire mediate the immediate 

137 outcomes for animals impacted by fire. 

138

139 2.1.1 | Search criteria

140 For the purposes of this study, animals were defined as non-human organisms in the 

141 kingdom Animalia. We only considered studies that measured the effect of a fire on the 

142 mortality of a known number of animals, such that their fate before and after the passage of 

143 fire was explicit and quantifiable. Because we were interested only in the direct effects of 

144 fire on animal mortality, we did not include studies that only estimated abundance or 

145 survival before and after a fire, or at burnt and unburnt sites based on trapping or 

146 observational data (see Whelan et al., 2002). We chose to exclude these studies because 

147 fleeing and/or emigration is a common response to fire (Nimmo et al., 2019), and these 

148 studies are typically unable to disassociate mortality from emigration (see Sergio et al., 

149 2019). Although both vertebrates and invertebrates could have been captured by our search 

150 criteria, only individual animals that were able to be tracked through the passage of fire—

151 typically via radio-tracking—qualified for inclusion in our systematic review. Because of this 

152 criterion, no invertebrate studies were captured here. Fire refers to both wildfire and 

153 planned (i.e., prescribed and experimental) burns. Publication date was unbounded.

154

155 2.1.2 | Literature search

156 We systematically searched Web of Science and Scopus databases in November and 

157 December 2020, using combinations of search terms relating to animals, fire and 

158 survival/mortality (Supporting Information 1). To increase the specificity of results, we also 
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159 refined these searches by including/excluding unrelated search categories (Supporting 

160 Information 1). We supplemented our literature search with further unstructured searches 

161 of published and grey literature (e.g., via Google Scholar and reference lists of returned 

162 studies). All searches were conducted in English. Our structured search returned 3,548 

163 studies, and seven extra studies were found using less structured methods. After duplicate 

164 records were removed, we retained 2,919 studies for review. We used the R package 

165 METAGEAR (Lajeunesse, 2016) to screen studies by title and abstract only and assess them 

166 against our inclusion criteria. This package was used to assess study titles and abstracts 

167 independently of all other information to reduce potential sources of bias. Following this 

168 screening, 62 studies were deemed appropriate for full text review, however, after 

169 examining the full texts, only 31 of these studies met our search criteria (see Supporting 

170 Information Figure S1.1 for the PRISMA diagram). All studies used in the systematic review 

171 are provided in Data Sources.

172

173 2.1.3 | Data extraction

174 For each study, we recorded the number of animals monitored through the passage of fire 

175 and the number killed directly by fire. We categorised each study based on the type of fire 

176 studied (e.g., planned fire or wildfire) and the severity of the fire event (e.g., low and high 

177 severity fire; Supporting Information Table S1.1). Fire severity is context-specific (Keeley, 

178 2009), and was applied as closely to how it was defined in the source publications. In a few 

179 cases, we contacted source study authors to confirm whether we applied the appropriate 

180 fire category to their study. Generally, low severity fires burnt in cooler conditions and left 

181 some unburnt groundcover, and unburnt canopy (in vegetation types that include a tree 

182 layer), whereas high severity fires burnt in warmer, more dangerous fire conditions and 

183 consumed most or all groundcover, and most or all canopy (in vegetation types that include 

184 a tree layer). Within each study, we categorised each study taxon based on its taxonomic 

185 class (e.g., bird, reptile, mammal, or amphibian), family and species. We recorded ecological 

186 attributes (e.g., terrestrial, arboreal, and volant) of all study taxa (Table S1.1). For all species, 

187 we recorded body masses using taxonomically appropriate databases (see Table S1.1). Some 

188 studies investigated multiple fires and/or their effects on multiple species. For this reason, 

189 we extracted “instances” of the direct effects of fire on the mortality of a single species 

190 during a fire event from each study. For animals to qualify as monitored through the 
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191 passage of fire, each individual must have been present in the area immediately prior to the 

192 area burning (see Supporting Information Table S1.1). We recorded geographical attributes 

193 of all instances (e.g., study continent, country, specific study location; Supporting 

194 Information Table S1.1). Based on study location, we then assigned all studies to a broad 

195 terrestrial biome following Olson et al. (2001). 

196

197 2.2 | Data analysis

198 We used the extracted data to visualise the spread of studies through time and space, and 

199 assessed them for temporal and/or geographical bias. We assessed whether traits of the 

200 study species, fire or fire regime affected the proportion of a population that died during 

201 fire. We removed instances with very small samples sizes (n < 5 individuals monitored 

202 through the passage of fire), after which we retained 29 of 43 instances of the direct effects 

203 of fire on mortality. We used generalised linear mixed models to test the effect of predictor 

204 variables on the proportion of animals that died during the passage of each fire, which we 

205 modelled as the number of animals that died during the fire (1s) and animals that survived 

206 the fire (0s) during a fixed number of Bernoulli trials (total number of animals monitored). 

207 Due to the small sample size (i.e., 29 instances), we fitted a series of univariate models 

208 relating the proportion of animals that died in relation to: fire type (levels: planned vs 

209 wildfire), fire severity (levels: low vs high severity), log-transformed body mass (continuous), 

210 ecological attributes (levels: terrestrial, arboreal vs volant), and animal class (levels: 

211 amphibian, bird, mammal vs reptile). To test whether the fire regime of a study region 

212 affected animal survival, we assigned each study a fire activity index (see Pausas & Ribeiro, 

213 2017). Fire activity indices (from 0 to 1) were assigned to each ecoregion (Olson et al., 2001) 

214 using MODIS hotspot data (Collection 5 Active Fire Products; Giglio, 2013) collected 

215 between 2000–2015 by scaling averaged fire activity and radiative power data by the area of 

216 each ecoregion (see Pausas & Ribeiro, 2017 for full methods). We then fitted a model 

217 testing whether the proportion of animals that died was affected by fire activity. 

218 Additionally, to test whether fire activity affected the vulnerability of animals to fire severity 

219 (i.e., are animals from fire-prone regions better able to survive high severity fires?) we fitted 

220 this model with and without an interaction with fire severity. As some individual species 

221 featured in multiple instances, we included species as a random effect. All analyses were 

222 performed using R version 4.0.3 (R Core Team, 2021) with the lme4 package (Bates et al., 
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223 2007). We then used the ggeffects package to predict the outcome of variables that had a 

224 significant effect on mortality (Lüdecke, 2018). 

225

226 3 | RESULTS

227 3.1 | Systematic review

228 Our systematic review returned 31 studies spanning 1984–2020 investigating the direct 

229 impacts of fire on the mortality rates of 31 species from 23 families (Figure 2). We found 

230 that studies tracking animals through the passage of fire have increased through time 

231 (Figure 2a). We observed a substantial geographical bias in the literature (Figure 2a & 3), 

232 with most studies coming from the USA (North America) and Australia (Oceania) (52% and 

233 42%, respectively). There was only a single study from each of Senegal and South Africa 

234 (each 3% of studies; Africa), and we detected no studies of fire-induced mortality on animals 

235 from Asia, Europe, or South America (Figure 2a & 3), despite there being vast fire-prone 

236 regions across these continents (Kelly et al., 2020).

237 Most studies focussed on the direct effects of fire on the mortality rates of mammals 

238 and reptiles (53% and 30% of instances, respectively), rather than birds and amphibians 

239 (12% and 5%, respectively; Figure 2b & 4). For all animal classes, most studies investigated 

240 the direct effects of planned and low severity fires (82% and 70% of instances, respectively), 

241 with relatively few investigating wildfire and high severity fire (19% and 30%, respectively; 

242 Figure 4). The majority of studies focused on the direct effects of planned and low severity 

243 fire on mammals (42%, respectively; Figure 4). We found no studies on direct impacts of 

244 wildfire or high severity fire on the mortality of amphibians (Figure 4).

245 The families most frequently studied were Muridae (rodents; 5 instances) and 

246 Viperidae (vipers; 5 instances; Figure 2b). In only five species (16%) were the direct impacts 

247 of fire on mortality assessed in multiple studies (Figure 5). Across all studies, there was an 

248 enormous range in the body sizes of the animal species studied, from 7.9 g red-backed fairy-

249 wrens (Malurus melanocephalus) (Murphy et al., 2010; Sommer et al., 2018) to the 

250 world’s largest terrestrial animal—the 4400 kg African bush elephant (Loxodonta africana) 

251 (Woolley et al., 2008). Most studies investigated the direct effects of fire on the mortality of 

252 animals that are currently listed as Least Concern according to the IUCN Red List of 

253 Threatened Species (74% of species; see Supporting Information). Two Near Threatened 
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254 (Bachman’s sparrow Aimophila aestivalis and gopher frog Lithobates capito), one Vulnerable 

255 (eastern box turtle Terrapene carolina carolina) and four Endangered species (African bush 

256 elephant Loxodonta africana, northern bettong Bettongia tropica, pygmy bluetongue lizard 

257 Tiliqua adelaidensis, and savanna chimpanzee Pan troglodytes verus) were studied (6%, 3% 

258 and 13% of species, respectively).

259 The direct impacts of fire on animal mortality have been investigated in seven of the 

260 14 global terrestrial biomes. We found examples of the direct effects of fire on wildlife 

261 mortality in planned fire and wildfire, and low and high severity fire, for most of these seven 

262 biomes (Figure 6). Despite half of all terrestrial biomes having been studied, most studies 

263 reported instances of planned and low severity fire in temperate broadleaf and mixed 

264 forests (42% of instances, respectively; Figure 6). Currently, there has been no study of the 

265 impacts of fire on animal mortality in 50% of terrestrial biomes and, of those that have been 

266 studied, there is no information on the impacts of high severity fire or wildfire in 43% 

267 (Figure 6). 

268

269 3.2 | Factors affecting mortality during fire 

270 Overall, within-study sample sizes of species monitored through the passage of fire tended 

271 to be relatively small (53% of instances monitored fewer than 10 individuals). Most studies 

272 (65% of instances) recorded no direct mortality caused by fire (Figure 5). Across all fires, the 

273 mean (95% CI) predicted direct effect of fire on animal mortality was 3% (1–9%), and 

274 observed mortality ranged from 0 to 40% for studies tracking five or more individuals 

275 (Figure 7). Generalised linear mixed models revealed no apparent effects of fire type (F1,28 = 

276 1.13, p = 0.293), body mass (F1,28 = 1.55, p = 0.217), ecological attributes (F1,28 = 0.42, p = 

277 0.362), or animal class (F1,28 = 0.26, p = 0.702) on the direct effects of fire on animal 

278 mortality. Additionally, there was no apparent interactive effect of regional fire activity and 

279 fire severity on animal mortality (F2,16 = 0.88, p = 0.336), nor a main effect of regional fire 

280 activity after the interaction was removed (F1,16 = 0.61, p = 0.438). There was, however, a 

281 significant effect of fire severity on animal mortality (F1,28 = 5.77, p = 0.016; Figure 7), with a 

282 greater predicted proportion of animals dying in high severity fires (mean mortality [95% CI] 

283 = 7% [2–21%]) than low severity fires (2% [1–7%]). 

284
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285 4 | DISCUSSION

286 4.1 | Direct effects of fire on animal mortality

287 Our characterisation and summary of the literature has revealed how little we know about 

288 the direct effects of fire on animal populations. Our systematic review identified only 43 

289 instances in 31 studies that quantified fire-induced animal mortality through the passage of 

290 a fire. We found that the vast majority of studies assessed the effects of planned fire—

291 which tended to be of low severity—on the mortality of animals. Hence, our understanding 

292 of how high severity fire affects animal mortality is particularly limited. Despite megafires 

293 being of growing conservation concern globally (Wintle et al., 2020), we found only one 

294 study documenting the impacts of megafire on animal mortality rates (i.e., Banks et al., 

295 2012). Our overall finding was that a surprisingly low proportion of animals were killed 

296 directly by fire (3% on average)—although a higher proportion of animals died during 

297 studies of high severity fires (7% on average). That such low proportions of animals were 

298 killed in the fires considered in the studies we compiled does not necessarily mean that 

299 some fires, especially fires of high severity and large extent, do not kill many animals. 

300 Indeed, a recent study based on systematic counts of burnt corpses indicates that millions of 

301 vertebrate animals were killed in a ~40,000 km2 fire in the Pantanal, South America (Tomas 

302 et al., 2021).

303 Studies of the direct impacts of fire on animal mortality tended to be characterised 

304 by small sample sizes (i.e., across all studies, 53% of instances tracked fewer than 10 

305 animals), a geographic bias towards North America and Australia, and a taxonomic bias 

306 towards mammals and reptiles. While, to some extent, the geographic and taxonomic biases 

307 reflect biases throughout the ecological literature (Di Marco et al., 2017; Troudet et al., 

308 2017) and the geographic bias may be due, in part, to our filtering of studies published in 

309 English, it may also be a result of the financial cost, labour-intensiveness, and logistical 

310 difficulties inherent in tracking the movements and survival of individual animals in the wild 

311 using very high frequency (VHF) and Global Positioning System (GPS) technology. The 

312 taxonomic bias away from birds, amphibians, and invertebrates may be explained by their 

313 generally small body size requiring often impractically small and prohibitively expensive 

314 transmitters. Encouragingly, this field of animal monitoring is rapidly growing and 

315 technological innovation is expected to progressively reduces tag weights and costs (Nimmo 
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316 et al., 2019; Sergio et al., 2019). This could allow a rapid increase in our understanding of 

317 animal movement and survival through the passage of fire (Nimmo et al., 2019).

318 Many animal species that inhabit fire-prone ecosystems have evolved a range of 

319 adaptations for detecting and responding to fire, and such adaptations can reduce mortality 

320 (Nimmo et al., 2021; Pausas & Parr, 2018a). Our study suggests that these adaptations are 

321 deployed highly effectively, at least in response to low severity fires. Some animals can 

322 detect the cues of incipient fire (e.g., Álvarez-Ruiz et al., 2021; Doty et al., 2018; Grafe et al., 

323 2002; Nowack et al., 2018) and enact responses to reduce the risk of being consumed by the 

324 flames (Nimmo et al., 2021). Pausas & Parr (2018) identified a range of “fire response 

325 strategies” that enhance survival during fire, including rapid refuge seeking. Some of these 

326 behaviours are evident in the papers reviewed. For example, swamp wallabies (Wallabia 

327 bicolor) and savanna chimpanzees (Pan troglodytes verus) ‘double back’ through the fire 

328 front to shelter in areas that have already burned (Garvey et al., 2010; Pruetz & Herzog, 

329 2017), while brown antechinus (Antechinus stuartii) ‘shelter in place’ in non-flammable 

330 refuges and enter torpor to reduce their need for limited resources in the depauperate and 

331 dangerous post-fire landscape (Stawski et al., 2015). 

332 Although we found substantially higher mortality rates in relation to high severity 

333 fire, even here <10% of monitored animals died during fire, suggesting fire-avoidance 

334 behaviours can confer survival even during high severity events. However, we caution that 

335 ‘high severity’ fire was classified by the authors of the reviewed studies and may encompass 

336 the outcomes of a broad range of fire behaviours, from late dry season grassfires, relatively 

337 slow-moving crown fires to pyro-cumulonimbus storms that spread rapidly for tens of 

338 kilometres (Dowdy et al., 2017). The variability in mortality within our high severity class is 

339 likely to be significant, and we are almost entirely without quantification of the mortality toll 

340 of extreme severity fires, such as megafires. Yet the single example that we do have again 

341 reinforces the capacity of animals to survive even extreme fire behaviour. In 2009, Banks et 

342 al. (2012) attached transmitters to eight mountain brushtail possums (Trichosurus 

343 cunninghami) prior to the unanticipated ‘Black Saturday’ megafires in Victoria, Australia 

344 (Cruz et al., 2012). Despite the extreme severity of this uncontrolled wildfire, no direct 

345 mortality of possums was recorded in this study. Presumably, possums avoided fire-driven 

346 mortality by sheltering in deep tree hollows that reduced their exposure to extreme heat. 
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347 Our findings come with some important caveats. First, we have not attempted to 

348 quantify the full mortality toll of fire on animal populations, which requires consideration of 

349 both the direct and indirect effects of fire. While many animals may survive the passage of 

350 fire, some may sustain severe burns that reduce their subsequent fitness. Furthermore, the 

351 post-fire environment presents novel challenges that may have significant effects on the 

352 persistence of local populations (e.g., Leahy et al., 2015; Shaw et al., 2021). For example, 

353 although most American hispid cotton rats (Sigmodon hispidus) survived the passage of fire, 

354 most of the monitored populations fled to nearby unburnt plots, and those that did not flee 

355 suffered increased predation pressure in the burnt plots (Conner et al., 2011; Morris et al., 

356 2011). Similarly, although all monitored pale-field rats (Rattus tunneyi) survived the passage 

357 of both low and high severity experimental burns in northern Australia, mortality due to 

358 predation increased after fire, probably due to loss of groundcover (Leahy et al., 2015). 

359 Further, reduced resource and shelter availability post-fire can reduce animal fitness 

360 (Fenner & Bull, 2007), potentially increasing their vulnerability to predation. While this 

361 review documented immediate direct mortality effects of fire on wildlife, there is a need for 

362 quantification and exploration of subsequent and indirect effects of fire on animal survival, 

363 both positive and negative. 

364 Second, small sample size is a limitation of our data—both the number of studies 

365 and the sample sizes within these studies. The current lack of available data on direct 

366 mortality from fire means that we found very few studies where large numbers of animals 

367 were impacted, but such events do occur (e.g., in a herd of 165 endangered African bush 

368 elephants, 29 (18%) died as a direct result of an uncontrolled wildfire in South Africa 

369 (Woolley et al., 2008)). A greater emphasis on collecting such data in future will allow 

370 scientists to better understand the factors that shape both large mortality events and the 

371 contexts and mechanisms that allow wildlife to survive fire.

372 Finally, both the direct and indirect impacts of fire on animal populations need to be 

373 considered within the broader context in which the event occurs. Climate change is rapidly 

374 altering global fire regimes (Bowman et al., 2020), resulting in increased wildfire frequency 

375 and intensity (Di Virgilio et al., 2019; Duane et al., 2021; Jolly et al., 2015; Wu et al., 2021). 

376 While individual fires may not cause significant mortality in fire-adapted species, changes in 

377 the fire regime, combined with other threats, may well add to the tapestry of threats that 

378 species face (Banks et al., 2011; Geary et al., 2019; Moir, 2021). 
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379

380 4.1 | Knowledge gaps and future research

381 There is an urgent need to understand the effects of high severity fire on animal 

382 populations. Our study underscores how little we know about the direct effects of fire on 

383 animal mortality rates. This knowledge gap limits our ability to understand fire as an 

384 evolutionary force and to assess the conservation consequences of population-level impacts 

385 of increasingly large and severe fires on vulnerable species. While it would be relatively 

386 straightforward to increase our understanding of the impacts of planned fire on wildlife, it is 

387 far more difficult to monitor the effects of large, unpredictable and uncontrolled wildfires 

388 on animals. The most obvious way to approach filling this knowledge gap would be to 

389 drastically increase the tracking of native wildlife, particularly in areas and times of severe 

390 wildfire danger. Addressing this gap will require ecologists working closely with fire 

391 managers to track the fate of animals from a broader array of taxonomic groups and 

392 geographic areas through the passage of fire, and months following fire. This is likely to be 

393 aided by advances in the technology for tracking animals, making the task cheaper and less 

394 logistically challenging (Cooke et al., 2004; Kays et al., 2015). 

395 Future research hoping to advance our understanding of the direct effects of fire on 

396 animal survival would benefit from following a consistent and repeatable approach to 

397 monitoring animal survival during fire (e.g., see Geary et al., 2020). We found that fire 

398 severity affected animal survival during fire, but we predict that, with a greater number of 

399 studies encompassing a broader array of taxonomic groups, life histories, and regions, more 

400 variables will be found to influence animal survival (see Figure 1). Animal survival during fire 

401 is likely exceptionally complex and context-dependent, however, there are likely broad 

402 proximate and distal drivers that affect outcomes for individuals during fire (Figure 1). 

403 Environmental variables, such as resource and refuge availability and fuel conditions are 

404 likely to be strong proximate and distal drivers of animal survival during fire. For example, 

405 refuge availability may directly improve animal survival by providing unburnt refugia at 

406 various spatial scales that simply allows animals to avoid fire (Robinson et al., 2013), while 

407 large, continuous loads of dry fuel may indirectly reduce animal survival by stoking higher 

408 severity fires (Pausas & Keeley, 2021). 

409 We found that fire severity had a strong influence of animal survival during fire, 

410 however, it is possible that the effects of fire behaviour on animal survival are more 
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411 nuanced than what we detected. Factors, such as fire season (prevailing weather 

412 conditions), intensity (burn temperature), speed (driven by wind) and size (driven by 

413 distribution of fuel) likely affect the survival of animals during fire, and could easily be 

414 incorporated into future models to test their effects (Figure 1). 

415 The relationship between animal traits and survival during fire can be divided into 

416 individual and species traits (Figure 1). Although there is very little empirical research 

417 demonstrating that survival during fire is influenced by individual traits, such as age, 

418 satiation, reproductive status, physiological condition, prior experience, and individual 

419 differences in innate fire avoidance behaviours (e.g., Álvarez-Ruiz et al., 2021), we predict 

420 that these factors could strongly modulate the outcomes for individuals (see Nimmo et al., 

421 2021). Measuring how these differences affect survival in the field will be difficult and would 

422 require sampling large numbers of individuals, and may be most meaningfully measured in 

423 tightly controlled manipulative experiments. Species traits, however, such as mobility, size, 

424 ecological attributes, evolutionary exposure to fire, and adaptation to local fire regimes, 

425 likely have a strong influence on whether individuals survive during (Nimmo et al., 2021; 

426 Pausas & Parr, 2018b). When sufficient data become available, these traits could quite easily 

427 be included as variables in future analyses to assess their effect on survival. Although we 

428 assessed the effects of some of these species traits and found they had no effect on 

429 mortality, we anticipate that they may become important with a larger dataset.   

430 We hope our conceptual framework outlining the variables that likely influence the 

431 outcomes for individuals during fire may be leveraged to improve the design of 

432 observational and experimental studies aimed at filling these gaps in our understanding of 

433 the direct effects of fire on animal survival.  

434

435 5 | CONCLUSIONS

436 Although we have much to learn about animal mortality rates during fire, the evidence 

437 suggests that most animals survive their direct effects, particularly during low severity fires. 

438 As such, management actions that address the challenges faced by animals in the post-fire 

439 landscape could be extremely valuable in reducing the longer-term, indirect impacts felt by 

440 animal populations in the weeks, months and years following a fire event. Put simply, all is 

441 not lost after a fire—many animals survive, providing opportunity for conservation 
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442 intervention aimed at reducing post-fire mortality. Efforts that reduce post-fire predation 

443 pressure, such as the addition of artificial refuges to the landscape (e.g., Bleicher & 

444 Dickman, 2020) and targeted invasive predator control (Geary et al., 2021), and those that 

445 replace resources consumed by fire, such as supplemental food and water stations and nest 

446 boxes, could be leveraged to reduce the vulnerability of populations of threatened species 

447 following high severity wildfires.
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818 FIGURES

819 FIGURE 1. Conceptual framework of factors affecting animal survival during fire. Direction of effects are 

820 driven by assuming each variable is maximised. Environmental variables can affect survival both directly 

821 (proximate driver; thick arrows) and indirectly (distal driver; thin arrows) by influencing fire variables and 
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822 animal traits. Resource availability directly improves the condition of individuals, which may improve 

823 individual survival. Refuge availability may directly improve animal survival by providing unburnt refugia at 

824 various spatial scales that allows animals to avoid fire (Robinson et al., 2013). Fuel load and fuel dryness 

825 provide combustible material for fire in the landscape and directly increase the chances of fires being of high 

826 severity. Fire variables likely strongly affect the survival of animals during fire with more severe fires reducing 

827 the extent or incidence of unburnt refuges and consuming more flammable shelter sites. Fire severity is driven 

828 by fire season (prevailing weather conditions), intensity (burn temperature), speed (driven by wind) and size 

829 (driven by distribution of fuel), and likely has a strong influence of animal survival during fire, with fires of high 

830 severity significantly reducing animal survival during fire. Animal traits likely influence animal survival via 

831 several pathways. Individual traits, such as age, satiation, reproductive status, physiological condition, prior 

832 experience, and individual differences in innate fire avoidance behaviours, may affect the chances that an 

833 individual survives during fire (Nimmo et al., 2021). The dotted line denotes uncertainty. Species traits, such as 

834 mobility, size, ecological attributes and evolutionary exposure to fire, likely have a strong influence on whether 

835 individuals survive fire events (Nimmo et al., 2021; Pausas & Parr, 2018b). Animals that are more able to avoid 

836 the lethal effects of fire, due to their innate ability to detect and appropriately respond, shelter in fire-safe 

837 refugia because of their size or ecology, or simply their ability to rapidly flee to a safe distance, are likely to 

838 increase their likelihood of surviving during fire. 

839

840 FIGURE 2 (a) Number of published studies in the systematic review dataset (total 31) per continent, per 

841 decade; and (b) number of instances that a species from each family grouped by animal class appeared in a 

842 study in the systematic review dataset.

843

844 FIGURE 3 Global map of study locations. Species-specific examples of the direct effect of fire on animal 

845 mortality appear in boxes. Photograph credits: (A) James Leon Young CC BY-SA 2.0; (B) Vicki's Nature CC BY-

846 NC-ND 2.0; (C) Alana de Laive; (D) Stewart Macdonald; (E) Brookhaven National Laboratory CC BY-NC-ND 2.0; 

847 (F) flickrfavorites CC BY 2.0; (G) David Cook Wildlife Photography CC BY-NC 2.0; (H) patrickkavanagh CC BY 2.0.

848

849 FIGURE 4 Counts of the number of instances (A) a fire type (planned or wildfire) and (B) a fire severity (low or 

850 high) was studied for each animal class.

851

852 FIGURE 5 Direct effects of fire on the mortality of wildlife showing proportion killed by fire in each instance. 

853 Species that appear multiple times reflect multiple studies, or multiple instances, where the direct impact of 

854 fire was observed.

855

856 FIGURE 6 Counts of the number of instances (A) a fire type (planned or wildfires) and (B) a fire severity (low or 

857 high) was studied in each biome. Biomes are taken from Olson et al. (2001).

858
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859 FIGURE 7 Mean predicted mortality (95% CI) of wildlife exposed to low and high severity fires (blue). Only 

860 studies that monitored five or more individuals through the passage of fire were included. Black dots represent 

861 observed direct effects of fire on animal mortality, with size of circle representing the number of animals 

862 monitored.
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