
Symbolic Execution with Invariant Inlay: Evaluating
the Potential

Eman Alatawi1, 2, Tim Miller1, and Harald Søndergaard1

1School of Computing and Information Systems, The University of Melbourne, Victoria 3010, Australia
2Computer Science and Engineering, Taibah University, Almadina Almonawara 42353, Saudi Arabia

ealatawi@student.unimelb.edu.au, {tmiller, harald}@unimelb.edu.au

Abstract—Dynamic symbolic execution (DSE) is a non-
standard execution mechanism which, loosely, executes a pro-
gram symbolically and, simultaneously, on concrete input. DSE
is attractive because of several uses in software engineering,
including the generation of test data suites with large coverage
relative to test suite size. However, DSE struggles in the face of
execution path explosion, and is often unable to cover certain
kinds of difficult-to-reach program points. Invariant inlay is a
technique that aims to improve a DSE tool by interspersing
code with invariants, generated automatically using off-the-shelf
tools for static program analysis using abstract interpretation. To
capitalise fully on a static analyzer, invariant inlay applies certain
instrumentations and testability transformations to the program
source. In this paper we outline the invariant inlay approach,
and how we have evaluated the idea, in order to determine its
usefulness for programs with complex control flow.

I. INTRODUCTION

Static analysis and systematic software testing are two

fundamental techniques that aim to ensure software quality.

Recently, there has been an obvious interest in exploiting the

strengths of these two techniques to work together to attain

their goals effectively.

Dynamic Symbolic Execution (DSE) [1] is a dynamic

analysis technique that systematically explores a program,

keeping track of how the inputs forced execution to take the

path it took. DSE starts with symbolic inputs that represent

possible concrete values, and then execution is carried out by

manipulating symbolic expressions rather than concrete values.

DSE evaluates both branches of any branching condition, so

as to find alternative inputs that will steer the execution to

follow an alternative path. In this task, a DSE tool is assisted

by a suitable constraint solver. Thus, DSE simultaneously

and symbolically follows all possible executable paths in the

program with a goal of achieving high coverage for some

chosen definition of coverage.

In practice, the massive number of program paths to be

explored and the number of constraints to be solved hinder

scalability of DSE [2]. This problem is referred to as path
explosion.

Path explosion can be caused by nested calls, loops and con-

ditionals, and particularly input dependent loops (those where

the number of iterations depends on an input of the program)

[3], [2]. The problem is made worse in the presence of indirect

relations between symbolic and non-symbolic variables within

input dependent loops and loop dependent branches [4]. This

can significantly affect DSE results in terms of code coverage.

Existing research has proposed various ways of controlling

path explosion, including bounding loop iterations [5], search

heuristics to maximize code coverage as quickly as possible

[6], function summaries [3], [2], state merging [7], redundant

path elimination [8], and identification of skippable functions

and code fragments [9]. While these solutions have made

the approach practical for several types of applications, path

explosion still represents a massive challenge in DSE.

In Alatawi et al [4], we proposed combining DSE with

abstract interpretation [10] to tackle path explosion caused

by input dependent loops. The idea was to precede DSE

with well-known analyses from abstract interpretation based

on relational abstract domains. This allowed us to capture

indirect control dependencies on the inputs of the program and

express these as relational invariants. Then, we would insert

these invariants as assumptions before the loop to provide DSE

with additional information to help in the handling of input

dependent loops and loop dependent branches efficiently. In

this paper, we extend that work with a form of testability
transformation [11] based on the inferred invariants to help

DSE to reach a specific target in the program. In the presence

of input dependent loops, this enables DSE to reach interesting

points in the program that would otherwise not be reached, as

symbolic execution easily gets caught inside input dependent

loops, making no useful progress.

Testability transformation [11] (or targeted program trans-

formation [12]) is a source-to-source program transformation

that improves the testability of a given program by applying

some transformations to improve and simplify the process

of generating test inputs. The transformed program is used

to generate tests that aim to reach a defined target (i.e.,

assert statement) before it is discarded. After that, the original

program is used to be tested against the generated test inputs.

Targeted transformations can have a remarkable impact on

symbolic execution scalability [12]. We call our approach

invariant inlay.

To rephrase our goal, we want to incorporate two important

program analysis techniques, one static and one dynamic, com-

bining abstract interpretation and dynamic symbolic execution

to improve systematic test input generation. More precisely,

we explore techniques that help DSE increase coverage, and in



x = input;
y = 0;
while (x > 0) { // Input-dependent loop

x = x - 1;
y = y + 2;

}
if (y > limit/2) { // Loop dependent branch

error(); // Target
}

Fig. 1. Illustrative loop example

particular, make progress in loop intensive programs. We have

built a simple proof of concept implementation that supplies

a DSE tool with program runtime invariants generated by

abstract interpretation.

In this paper we explain the approach and evaluate our

particular combination of testability transformation, static pro-

gram analysis (to provide relational invariants), and dynamic

program analysis (DSE).

II. MOTIVATING EXAMPLE

In Figure 1, the termination condition of the loop depends

directly on the symbolic input x. In a first round, a DSE tool

might explore the branch that does not exercise the body of the

while loop. Then it will pick a positive x value. Assuming that

an input value x = 5 is chosen, the DSE tool will generate

as a first path condition: (x > 0), (x − 1 > 0), (x − 2 >
0), (x − 3 > 0), (x − 4 > 0), (x − 5 > 0). Only x, and not

y, appears in this path condition because the initial value of

y cannot affect the execution path of the program). Then, a

new test will be generated by negating each constraint in the

path condition leading to generation of 5 tests in this case. In

fact, an infinite number of tests can be generated to explore

this simple loop because x is unbounded leading to cases in

which the DSE algorithms get “stuck” in the loop.

The information available to the DSE tool just before the

‘if’ statement does not suggest which input x, if any, will reach

error(). This is because y depends on the number of loop

iterations, and y is never made to depend on other variables via

assignments. Hence the branch (y > limit/2) is indirectly
dependent on x. This can make it difficult for the DSE tool to

find a value of x that makes (y > limit/2) true (or false).

Existing DSE tools ensure that execution terminates in a

reasonable time by setting a bound on the number of itera-

tions of input-dependent loops. However, setting the bound

arbitrarily causes some program paths to remain unexplored.

For example, assuming that limit = 10000, the then branch

of the condition (y > limit/2) in our example will not be

covered within 60 seconds using a well-known state-of-the-

art DSE tool, namely KLEE [13]. To cover error(), the

loop body must be executed more than 2500 times (given the

particular value of limit), so the loop execution terminates

with an appropriate y value. In our experiment, KLEE is able

to reach error() after 5 minutes and 22 seconds, generating

a new test value x = 2501.

In the example, whenever the value of x is decremented

by 1, the value of y is incremented by 2, so there is a linear

x = input;
y = 0;
x0 = x; // Instrumentation
cnt = 0; // Instrumentation
/* [y=cnt*2, x0=cnt+x] */
while (x > 0) {

/* [y=cnt*2, x0=cnt+x, x>=1] */
x = x - 1;
y = y + 2;
cnt = cnt + 1; // Instrumentation

}
/* [y=cnt*2, x0=cnt+x, x<=0] */
if (y > limit/2) {}

/* [y=cnt*2, x0=cnt+x, x<=0, cnt>limit/4] */
error(); // Target

}

Fig. 2. Simple loop example with invariants

relation between x and y. However, such realtions will not be

captured by DSE which only tracks dependencies on program

symbolic input x during execution, not relations to or among

other non-symbolic variables (such as local variables) of the

program under test. More specifically, if x0 is the initial

value of x, and cnt represents the loop counter, then the

relation between x and y is captured by the loop invariant

x0 = cnt+x∧y = cnt∗2. Such relations can be statically and

automatically inferred by abstract interpretation [10]. For the

example we can use convex polyhedra [14] to approximate the

set of reachable runtime states. Figure 2 shows the invariants

inferred by polyhedral analysis.

Providing such information about relations between pro-

gram variables and loop iterations to the DSE at the beginning

of the symbolic execution can guide DSE to generate a test

input that steers execution to reach the desired target. Knowing

the loop invariant x0 = cnt + x ∧ y = cnt ∗ 2, together

with x ≤ 0 and the calculated constraint at the targeted line

cnt > limit/4, the DSE tool can have a constraint solver find

a solution, say, x = 0, x0 = 2501, cnt = 2501, and hence

produce a successful input value 2501.

III. THE INVARIANT INLAY APPROACH

Given a program that contains a loop whose number of

iterations is directly or indirectly dependent on program un-

bound symbolic inputs, and a target line that is guarded by

conditionals that depends indirectly on the program symbolic

inputs and the number of times that the loop has been executed,

our aim is to generate a test that steers the program execution

to reach the target.

The approach consists of generating an over-approximated

version of program P using forward and/or backward rela-

tional abstract interpretation to capture indirect relations in

the program that might be missed by the nature of DSE

(such as when there is a control dependency on a non-

symbolic variable that will be ignored by DSE). In our use of

abstract interpretation, each program point is associated with a

relational invariant on numerical program variables. Every run-

time program state will satisfy the invariants irrespective of

what values input may take, but in general, the invariants will

over-approximate the set of possible run-time states. We then



use the inferred invariants in source to source program trans-

formations that result in a loop-free (but over-approximated)

version of the input program. This program is then handed to

the DSE engine to generate test inputs.

Invariant inlay consists of four steps:

Step 1: Program instrumentation. We introduce two types

of variables: Symbolic input initial value holder v0 for each

symbolic variable vs, and a loop counter ci for each loop Li

to represent the total number of loop iterations. Then, for each

input v, we assign to v0 the initial symbolic value of v, and

increment the loop counter ci within the loop to explicitly

represent the total number of loop iterations.

These new variables are used to prompt the abstract in-

terpreter to explicitly discover symbolic relational invariants

using any relational abstract domain. This can help in relating

program inputs to loop iterations, and infer any relational in-

variant between program inputs, loops and other non-symbolic

variables that either directly or indirectly are dependent on the

program symbolic inputs or a preceding loop.

Using v0 helps preserve the value of the input v before

it might be changed inside P , so at any program point,

v0 represents the initial symbolic input that will lead the

execution to reach that point regardless of the current value of

the v at that point.

Step 2: Invariant generation. In the second step, we invoke

forward abstract interpretation to analyze the the instrument

program P ′, and infer relational invariants using Cousot and

Halbwachs’s polyhedral domain [14]. Polyhedral abstract in-

terpretation generates invariants at each program point which

may reveal non-trivial relations among sets of variables, and

these relations can be used to strengthen generated path

constraints. Every state actually met at a program point during

DSE must satisfy the corresponding invariant by definition.

Step 3: Testability transformations. Our approach uses

source to source branch-coverage preserving transformations

[11]. A testability transformation is not necessarily semantics-

preserving. Rather it preserves the sets of test inputs which

are adequate according to the branch-coverage criterion. Ex-

amples of testability transformations include using merging

or splitting loops, induction variable substitution, changing

float variables to integer variables, and replacing large constant

tables with mathematical formulas [11]. It has been pointed

out [12], [15] that effectiveness of DSE can vary considerably,

in terms of exploring the program space, between semantically

equivalent programs. A program transformation that improves

a program’s runtime behaviour may simultaneously hamper its

symbolic execution. Consequently, testability transformations

can improve the scalability of DSE effectively, owing to their

impact on both path exploration and constraint solving [12].

Invariant inlay provides the invariants associated with the

target as assumptions at the beginning of the program, and

then generates a loop summary using inferred loop invariants

by abstract interpretation to describe the overall effect of the

loop on variable values including symbolic and non-symbolic

variables, and loop counters. This is done by assigning to

each program variable its value given by an expression over

:
ASSUME(x0==x+cnt && cnt==y/2 && x<=0 && cnt>2500)
if (x > 0) {

ASSUME(x0==x+cnt && cnt==y/2 && cnt>=0 && x>=1)
}
else if (x<=0) {

ASSUME(x0==x+cnt && y=cnt*2)
}
if (y > limit/2) {

ASSUME(x0==x+cnt && cnt==y/2 && x<=0 && cnt>2500)
error(); // Target

}

Fig. 3. Simple loop example with transformations

the input variables, their initial symbolic values, and other

non-symbolic variables or loop counters if there is a relation

between them as indicated by the invariant.

The loop summary is represented as an if statement that

contains information about the entry and exit state of each

loop in conjunction with the loop invariant. The loop effect

on the program variables is included as assumptions inside

the if statement. The summary replaces the original loop, pro-

viding an over-approximated loop-free version of the original

program. This version is used by DSE to generate test data.

Figure 3 lists the new transformed version of the example

given in Figure 1.

Step 4: Test input generation. The transformed version of

the program is then used by a DSE tool to generate tests that

aim to reach the defined test target (assert statement). Then

this version is discarded, and the original program is used to

be tested against the generated test inputs.

IV. EMPIRICAL EVALUATION

The goal of our evaluation is to understand the effectiveness

of using abstract interpretation to alleviate the path explosion

problem in directed DSE in terms of efficiency (that is, time

to reach the target), and target coverage.

Dependent and independent variables. We consider one

independent variable which is the test suites origin: We gener-

ated two sets of test suites for each program: one using DSE

on original programs; and another test suite using transformed

programs based on invariant inlay.

We consider the following dependent variables that can be

influenced by the type of the generated test suite (i.e., the

independent variable): time to reach the defined test target in

seconds, invariant generation time, number of paths explored,

indicating how invariant inlay affects the path exploration, and

whether it has positive or negative impact on path explosion.

We also consider the total number of tests generated by DSE

until the required target is reached, and finally, the target

coverage to indicate whether the required target is reached

or not.

Subjects. We have applied our method on a collection of

200 programs, most of which are chosen from the software

verification competition (SV-COMP) benchmarks [16] that are

widely used in program analysis research. We have added

some interesting examples from the literature. We report 15



interesting cases from all of these, of which 14 subjects come

from SV-COMP benchmarks, and one essentially taken from

Figure 2 in paper [17] (subject 2). We mainly considered sub-

jects from the “loops” category of (SV-COMP) benchmarks.

Owing to restrictions imposed by the abstract interpretation

tool, we chose only subjects that have integer inputs. Each

subject in the SV-COMP benchmarks has a clearly defined

outcome outlined in the file name. Some benchmarks have

assertions to check some properties, so we have used them as

interesting lines for KLEE to reach. However, some bench-

mark programs have no assertions. Thus, we have used the

defined outcomes specified in the benchmark file name to

insert an assertion that checks for the property (such as no-

overflow or true-termination), to see whether KLEE is able

to cover that assertion and generate an appropriate test input

leading to that assert statement.

Program instrumentation is done by inserting two types

of auxiliary variables, namely initial values holders Io, and a

loop counter cl for each loop l. The program is then compiled

to LLVM bitcode to be used by the analysis tools.

Inferring relational invariants. We use the abstract in-

terpretation tool PAGAI [18] to analyze the program, first

to check the reachability of the defined target, and then

to infer relational invariants over program inputs, auxiliary

variables, loop counters, and other local variables. We have

configured PAGAI to use polyhedral abstract interpretation, as

implemented in the Apron library [19], to infer the relational

invariants.

Transformations, and tests generation. In the transformed

version of the program, we use the klee assume feature to

insert discovered invariants to reach the target at the very

beginning of the program to augment the path condition with

these new discovered relations. We also transform the loop

into an over-approximated conditional statement as per the

process explained in section III. Finally, we invoke KLEE on

the instrumented subjects to generate test inputs. Given the size

of the subjects, we used a maximum testing time of 60 seconds

per subject. We configured KLEE to report the total number

of generated tests that cover only new paths, and instructed

KLEE also to exit once it reaches the target defined as an

assert statement.

V. RESULTS AND DISCUSSION

Table I summarizes the preliminary results of processing

a sample of 15 subjects that represent various cases we

encountered during our evaluation. Subject is the Subject id,

LOC is the lines of code in the subject, Target reached? says

whether at least one test covers the target (represented as an

assertion), Time (s) is the time taken by KLEE to generate

a test that reaches the target, Exec. paths is the number

of execution paths explored, # Tests is the number of tests

generated by KLEE before reaching the target, and InvGen
Time (s) is the invariant generation time used by PAGAI.

Invariant inlay helped KLEE reach test targets in subjects

(1, 2, 3, 4 and 5) that could not be covered otherwise (KLEE

timed out, referred in the table as t/o). These programs contains

input directly (or indirectly) dependent loops, loop dependent

branches (inside or after the loop body), or nested loops.

In such cases, KLEE might suffer from path explosion, and

consume the maximum test time before reaching the target.

Thus, invariant inlay was successful in guiding KLEE to reach

the target that could not be reached otherwise in the allocated

test time. Subject 6 represents the case that even when KLEE

is able to reach the target, invariant inlay could speed up that

process as a result of the added relational information.

In the subjects 7, 8, 9, 10, 11 and 12, where KLEE was

able to reach the target, using invariant inlay increased the total

testing time (considering also the time of invariant generation).

For example, PAGAI spent 195.7 and 175.2 seconds in gen-

erating the invariants for subjects 11 and 12, respectively. By

inspecting the code, we found that the reason behind the long

invariant generation time is the complex branch conditions that

are used in these subjects. For example, subject 13 consists of

one loop fetching input and sending it to a calculation function

that has 131 conditional statements with compound conditions,

and the loop is not an input dependent one. Thus, invariant

inlay can negatively impact the efficiency of DSE, depending

on the abstract interpreter and the abstract domain used. In

cases where there is no occurrence of input dependent loops

or loop dependent branches (such as when the loop has a fixed

number of iterations), this adds analysis time unnecessarily.

Many of these cases could be detected with a static, syntactic

analysis, thus avoiding invariant inlay altogether.

Invariant inlay did not help KLEE reach the target in the

subjects 13, 14 and 15, as PAGAI was unable to generate

useful invariants. For example, PAGAI could not generate

useful invariants for subject 13 because of code complexity

caused by recursive implementation of multiplication by re-

peated addition. In this case, the generated invariants turned

out to be too weak to help KLEE, and KLEE consequently

succumbed to the path explosion caused by recursive function

calls.

VI. RELATED WORK

Saxena et al. [3] propose an approach called Loop-Extended

Symbolic Execution that captures how loop-dependent vari-

ables are related to the lengths and counts of elements in

the program input based on an input grammar by running a

separate static analysis. Godefroid and Luchaup [2] use loop

summaries to deal with certain types of unbounded loops that

include induction variables, whose values are modified by a

constant value or constant times for each loop iteration. Loops

are summarized by loop pre-conditions and post-conditions

that are derived from dynamically inferred partial loop invari-

ants relating the program inputs to the induction variables. In

contrast, invariant inlay leverages the strength of abstract in-

terpretation to infer loop invariants, and captures the relations

between program symbolic inputs and all program variables

purely statically before applying DSE. Symbolic execution

is then guided by the inferred relations, and simplified by

applying testability transformations.



TABLE I
RESULTS

Standard DSE DSE with Invariant Inlay
Subject LOC Target reached? Time (s) Exec. paths # Tests InvGen Time (s) Target reached? Time (s) Total time (s) Exec. paths # Tests

1 23 � t/o 1067 2 0.537 � 0.081 0.618 5 5
2 39 � t/o 2 2 0.904 � 0.053 0.957 2 2
3 38 � t/o 361 3 0.324 � 0.084 0.408 4 4
4 31 � t/o 998 2 0.267 � 0.062 0.329 2 2
5 33 � t/o 103 3 6.964 � 18.794 25.758 43 4
6 24 � 1.153 19 3 0.77 � 0.122 0.892 3 3
7 40 � 0.031 2 2 0.615 � 0.041 0.656 1 1
8 84 � 0.086 4 4 1.045 � 0.042 1.087 4 4
9 56 � 0.403 43 9 3.03 � 0.764 3.794 43 9
10 56 � 0.213 14 6 0.535 � 0.220 0.755 48 3
11 598 � 6.705 1500 80 195.7 � 10.73 206.43 2651 109
12 621 � 1.507 403 43 175.2 � 1.402 176.602 417 44
13 50 � t/o 2157 5 0.5 � t/o - 2249 5
14 568 � t/o 34355 56 19.256 � t/o - 43503 53
15 36 � t/o 411 5 1.373 � t/o - 6 5

VII. CONCLUSION

Invariant inlay is a technique that aims to improve DSE

by interspersing or replacing code with invariant assertions.

Invariants can be generated automatically by off-the-shelf tools

for static program analysis. We find that using invariant inlay

can increase the coverage achieved by DSE when DSE alone

cannot cover the test target due to path explosion caused by

input dependent loops, and also due to existence of indirect

relations between the program inputs and other variables. In

such cases, DSE can be guided successfully and efficiently to

reach the target by traversing a smaller number of program

paths. However, using invariant inlay in cases where DSE

might not suffer from path explosion can add unnecessary

analysis time. In addition, invariant inlay’s capability is limited

by the strength of the generated relational invariants using

abstract interpreters. In cases where abstract interpreter is

unable to generate useful invariants, or cannot handle the

program under test, invariant inlay might not support DSE

as intended. Our current work is to completely automate the

approach, and explore further testability transformations that

fit with DSE either in the general or directed form.

ACKNOWLEDGMENTS

The first author gratefully acknowledges support from

Taibah University, Saudi Arabia, through a PhD scholarship.

The work was also supported by the Australian Research

Council through Linkage Grant LP140100437.

REFERENCES

[1] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation (PLDI’05). ACM, 2005, pp. 213–223.

[2] P. Godefroid and D. Luchaup, “Automatic partial loop summarization
in dynamic test generation,” in Proc. 2011 Int. Symp. Software Testing
and Analysis (ISSTA’11). ACM, 2011, pp. 23–33.

[3] P. Saxena, P. Poosankam, S. McCamant, and D. Song, “Loop-extended
symbolic execution on binary programs,” in Proc. 18th Int. Symp.
Software Testing and Analysis (ISSTA’09). ACM, 2009, pp. 225–236.

[4] E. Alatawi, H. Søndergaard, and T. Miller, “Leveraging abstract in-
terpretation for efficient dynamic symbolic execution,” in Proc. 32nd
IEEE/ACM Int. Conf. Automated Software Engineering, G. Rosu, M. Di
Penta, and T. N. Nguyen, Eds. IEEE Comp. Soc., 2017, pp. 619–624.

[5] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: Whitebox fuzzing
for security testing,” Communications of the ACM, vol. 55, no. 3, pp.
40–44, 2012.

[6] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,”
in Proc. 23rd IEEE/ACM Int. Conf. Automated Software Engineering.
IEEE Comp. Soc., 2008, pp. 443–446.

[7] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” Acm SIGPLAN Notices, vol. 47, no. 6,
pp. 193–204, 2012.

[8] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic execution to less
traveled paths,” ACM SIGPLAN Notices, vol. 48, no. 10, pp. 19–32,
2013.

[9] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped sym-
bolic execution,” in Proc. 40th Int. Conf. Software Engineering. ACM,
2018, pp. 350–360.

[10] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in Proc. 4th ACM Symp. Principles of Programming
Languages (POPL’77). ACM, 1977, pp. 238–252.

[11] M. Harman, A. Baresel, D. Binkley, R. Hierons, L. Hu, B. Korel,
P. McMinn, and M. Roper, “Testability transformation—program trans-
formation to improve testability,” in Formal Methods and Testing.
Springer, 2008, pp. 320–344.

[12] C. Cadar, “Targeted program transformations for symbolic execution,”
in Proc. 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE’15). ACM, 2015, pp. 906–909.

[13] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proc. 8th USENIX Conf. Operating Systems Design and Implementation,
vol. 8, 2008, pp. 209–224.

[14] P. Cousot and N. Halbwachs, “Automatic discovery of linear constraints
among variables of a program,” in Proc. Fifth ACM Symp. Principles of
Programming Languages (POPL’78). ACM, 1978, pp. 84–97.

[15] S. Dong, O. Olivo, L. Zhang, and S. Khurshid, “Studying the influence
of standard compiler optimizations on symbolic execution,” in Proc.
26th IEEE Int. Symp. Software Reliability Engineering. IEEE Comp.
Soc., 2015, pp. 205–215.

[16] D. Beyer, “Competition on software verification (sv-comp),” bench-
marks; available at https://sv-comp.sosy-lab.org.

[17] B. Jeannet, P. Schrammel, and S. Sankaranarayanan, “Abstract acceler-
ation of general linear loops,” ACM SIGPLAN Notices, vol. 49, no. 1,
pp. 529–540, 2014.

[18] J. Henry, D. Monniaux, and M. Moy, “PAGAI: A path sensitve static
analyzer,” Electronic Notes in Theoretical Computer Science, vol. 289,
pp. 15–25, 2012.

[19] B. Jeannet and A. Miné, “Apron: A library of numerical abstract
domains for static analysis,” in Computer Aided Verification (CAV’09),
ser. Lecture Notes in Computer Science, A. Bouajjani and O. Maler,
Eds., vol. 5643. Springer, 2009, pp. 661–667.


