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ABSTRA

Nu

Sensory a s of beer are directly linked to perceived foam-related parameters and

d

beer colo im of this study was to develop an objective predictive model using

machi modelling to assess the intensity levels of sensory descriptors in beer

using the I measurements of color and foam-related parameters. A robotic pourer

M

(RoboBEER), was used to obtain 15 color and foam-related parameters from 22 different

commercidl beer samples. A sensory session using quantitative descriptive analysis

-

(QDA®) v ained panelists was conducted to assess the intensity of ten beer

J

descripto Ilts showed that the PCA explained 64% of data variability with

correlatio und between foam-related descriptors from sensory and RoboBEER such

LN

as the positive_and significant correlation between carbon dioxide and carbonation
mouthfee 0.62), and between viscosity from sensory, and maximum volume of
foam and time of foam (R = 0.75, R = 0.77, respectively). Using the RoboBEER
parameter uts, an Artificial Neural Network (ANN) regression model showed high

correlati —(0.91) to predict the intensity levels of ten related sensory descriptors

A
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such as yeast, grains and hops aromas, hops flavor, bitter, sour and sweet tastes,

viscosity, carbonation and astringency.

{

Practical ications

This paper is a novel approach for food science using machine modelling techniques that
[ ]

could con@ribute significantly to rapid screenings of food and brewage products to the

food indu the implementation of Artificial Intelligence (AI). The use of RoboBEER

G

to assess quality showed to be a reliable, objective, accurate and less time-

consumin thod to predict sensory descriptors compared to trained sensory panels.

d

Hence, t od could be useful as a rapid screening procedure to evaluate beer

U

quality at of the production line for industry applications.

Keywords: ificial neural networks; beer foam; sensory analysis; robotics; beer color
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1.0 INT ION

al

e most consumed alcoholic beverage worldwide in terms of volume

represe Yo of total volume sales. Moreover, consumers are constantly looking for

%

new options of beer, hence the industry focuses heavily on the development of new

products improving existing ones (Euromonitor-International 2016). However, this

8

brewage i complex in terms of specific sensory descriptors due to the diversity of

O

ingredien in the manufacturing process, such as malt, hops and yeast as well as
the possifife addition of adjuncts such as other cereals, flavors, fruit juices, among

others (Dglcour @and Hoseney 2010). The assessment of sensory attributes of beer is

{n

relevant re an indicator of beer quality, especially the visual characteristics such

1,

as foam-r, arameters, which, at the same time are closely linked to flavors, tastes
such as bj our and sweet, aromas due to the capacity of foam to release them, and

mouthfee by the carbonation and foamability (Baert and others 2012; Cooper and

A

others 2002; Gonzalez Viejo and others 2016; Gonzalez Viejo and others 2017)
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The raw materials used for the beer brewing contribute chemical compounds such
as proteins, carbohydrates, alcohol, among others, which affect the sensory
charactm the final product (Bamforth 2011). Hops are one of the crucial
ingredienng, which contributes the characteristic bitter taste from iso-alpha
acids. ;hﬂalpha acids as well as malts contribute to the characteristic color of
different mf beer and may lead to specific astringency levels. Additionally, iso-
alpha acids hav@ specific tensio-active properties, which contribute to foam formation,
stability an ing. Hops also contain essential oils that contribute to the complexity of

aromas a s found in beer (De Keukeleire 2000; Bamforth and others 2011).

The typelof fermentation (top, bottom or spontaneous), the type of yeast used,
anngsideCe original gravity and degree of attenuation (which defines the alcohol

content), ne the sweetness level of the final product. These two parameters have

an invers onship, hence the lower the alcohol content, the higher the sweetness,

as they depen
consume carbon dioxide is produced. Therefore, a higher amount of fermentable
sugars rt can lead to a higher carbonation in the final beer. Proteins and

carbohydrates derive mainly from malt and they constitute almost solely for the body or

d on the amount of fermentable sugars consumed by yeasts. As yeasts

viscosity Ls, which, at the same time, is highly linked with the foam stability

(Delcour eney 2010). The interest in studying foamability in beers relies on the
o]

influence oam formation and stability over other critical sensory components. Foam
plays a fugamental role in releasing aromas and to preserve flavor and taste, since with
reducewty, the beer comes in direct contact with the oxygen from the air and
thus it st xidize during its consumption, which results in the appearance of off -

flavors ( z Viejo and others 2016; Gonzalez Viejo and others 2017; Okada and

others Qz and others 2003).

The current demand for higher quality beers worldwide has increased the need for
new and more effective methods to assess their sensory descriptors and quality traits.

Descriptive sensory tests such as quantitative descriptive analysis (QDA®) and
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Spectrum™ have been used as tools to evaluate quality of beers and to ensure the
uniformity amongst different batches (Medoro and others 2016). However, these tests
requirer 10 - 16 people with extensive training, which is time consuming and

expensive and Scharf 2004). Rapid sensory methods such as Napping® and

P

sortingmwn reported to give reliable data without the requirement of a trained
panel. Ho@hese methods are used to find similarities or differences within a set of
samples Wyat negd to be evaluated in a single session and require a limited number of

samples (Antupnez and others 2015; Giacalone and others 2013).

S

ArtifiCia®neural networks (ANN) are a type of machine learning algorithm that

have the ability simulate the processing techniques of the human brain, giving it the

U

capacity t on-linear relationships within a set of parameters and targets (Lin and

1

others 20 is method has been actively applied for a wide range of purposes such
as diagnasti diseases (Khan and others 2001), prediction of weather (Tokar and
Johnson 19997 Kuligowski and Barros 1998), among others. It has also been proposed
as an alte ive way for more objective beer classification according to quality traits
such content, pH and CO, (Garcia and others 1995), according to

fermentation type (Gonzalez Viejo and others 2016) and to predict specific compounds in

beer, suchtic acid (Zhang and others 2012). Furthermore, ANN has been used to

(GonzaWnd others 2017), and to predict alcohol content and real extract using
mid- anmrared (Ifién and others 2006). In those three studies, the ANN models
were co with other methods such as partial least squares regression and linear

discrim nalysis, being ANN the most accurate method in all cases. Therefore,

appropriate els based on these types of algorithms can be based on rapid
measurements of beer parameters such as foamability and color, which can be obtained

using the RoboBEER.
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This paper discusses the development of machine learning modelling techniques,
specifically, artificial neural networks (ANN) to predict ten related sensory descriptors in
beer uwrameters including foamability, alcohol, carbon dioxide (CO,) and color
measurerobotic pourer, RoboBEER (Gonzalez Viejo and others 2016). The
objecti*e M machine learning models developed is to allow more efficient

assessme

E

mples at the end of the production line to have accurate results for
sensory scriptors such as viscosity, carbonation, astringency, bitterness, sourness,

sweetness and_aromas like yeast, hops and grains to use as a rapid method to assess

SC

beer qual

2.0 MATERIALS AND METHODS

H

A §et of 22 beer samples (Table 1) from three types of fermentation (8 from top,

£

7 from bottom and 7 from spontaneous) were used for sensory descriptive analysis. Each

a

beer was{sa in triplicate to measure all foam-related parameters to reduce bias

due to and / or other packaging related variability.

Table samples used classified by type, subtype and country of origin as well as their

M

packaging and net content with their respective abbreviation.

I

2.1 Foam sessment

To @ e all foam-related parameters using computer vision algorithms from

pouring . robotic pourer RoboBEER was used. RoboBEER is able to pour a

N

consta of beer (80 £ 10 ml) and monitor liquid temperature, alcohol and CO,

t

release in" real time using sensors controlled by Arduino boards® (Arduino, Italy). In

parallel, videos the pouring process and up to five minutes afterwards are recorded

J

using an iP 5S (Apple Inc., Cupertino. CA. USA). The post analysis of videos is

based tomized computer vision algorithms written in Matlab® ver. 2016a

A

(Mathworks, Inc., Matick. MA, USA). This robotic pourer is capable of giving a total of 15
parameters related to foamability and color of beer, such as maximum volume of foam

(MaxVol), total lifetime of foam (TLTF), lifetime of foam (LTF), foam drainage (FDrain),
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number of large (LgBubb), medium (MedBubb) and small bubbles (SmBubb) in the

foam, CO, release, alcohol content (OH), and beer color parameters in both scales

I

CielLab . nd RGB respectively.

Th issfrom the RoboBEER consists of three parts, i) data acquisition from

P

the sef%o erature, alcohol and CO,) using the CoolTerm terminal application ver.

1]

1.4.3 (Me processing of one frame at the peak pouring volume obtained from the

video to amalyzg¥the average color of a section of the center region of the liquid in both

C

scales (R CieLab) and iii) analysis of foam and bubble related parameters from

S

the pouring video. To analyze the foamability, the video was first processed using a

Ul

semi-supervisedBalgorithm that consists on the initial scaling to convert height into

volume fo y the manual selection of foam height every 1 second (30 frames), this

1

allows th automatically calculate volume of foam and liquid. After this process,

the code s the resulting volumes into TLTF, LTF, MaxVol and FDrain by analyzing

a

the area belo e curve of foamability and relevant parameters. Finally, the frame with

the maxi lume of foam obtained from the video is analyzed based on the “Hough

M

Transf _algorithm to obtain bubble size and distribution within the visible foam

in the glass wall (Condé and others 2017). A more detailed description of the RoboBEER

I

methodol

2.2 Senso @ ation

A 8ensory session for descriptive analysis was carried out to assess all beer

performance is found in work from Gonzalez Viejo et al. (2016).

no

samples. Jihe semsory session and training were carried out in the sensory lab facilities of

{

the Facul eterinary and Agricultural Sciences of The University of Melbourne,

U

Australia - UoM). A questionnaire using a 15 cm non-structured scale was

implem hrough a biometric-sensory application (bio-sensory App) (Torrico and

A

others 201 igned for Tablet PCs (Android) and developed by the sensory group
belonging to the School of Agriculture and Food within the FVAS - UoM. A sensory panel

of 12 participants that were prescreened to be regular beer consumers, were able to
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verbalize descriptors, and that had previous experience in similar tests, was used to
conduct the session. These panelists were trained to detect basic tastes and aromas
using tmtional Standard methodology (ISO 8586-1: 1993E Sensory analysis --

General d s for the selection, training and monitoring of selected assessors and

P

expert sepsoLyassessors, and quality control procedures) (ISO 1993), this training was

conducteMsessions of 60 mins each. The general training consisted of basic tastes

using so@loride for salty, sucrose for sweet, caffeine for bitter, monosodium

glutamate for umami and citric acid for sour taste using the dilutions suggested in the

above International Standard. Furthermore, the training included the
familiariz h different aromas generally found in beer using the Le Nez du Vin®:
Wine Aro Le Nez du Vin, France) including aromas such as fruity (lemon, cherry,

apple, orzSge), floral (acacia, honey, rose, violet), vegetal and spicy (yeast, cedar, pine,

cut hay, c nimal notes (butter, leather) and roasted notes (toast, caramel, coffee,
smoke), hers.

Th tion of descriptors for the test was carried out using the quantitative
descri is (QDA®) method in blind tasting sessions using the different beer

samples to generate consensus and agreement on a set of the most relevant attributes.

For the Chhe training sessions and selection of descriptors consisted of seven

sessions ¢ ins each and divided as follows: i) two sessions were dedicated for top

fermentation

spontane&s fermentation samples, and iv) one more session for a mix of all types of

beers. M the panel performance during the training, a combination of cluster

beers, ii) two sessions for bottom fermentation, iii) two sessions for

analysis, deviation, ANOVA and spider chart (data not shown) were developed

to assess ant differences within the panelists for each descriptor.

Qouble-blind sensory session was conducted to evaluate the intensity of

the different descriptors for the 22 beer samples used in this study (Table 1). The
samples were served at refrigeration temperature (~4°C) and covered with aluminum

foil by an independent person that did not participate in the session, which codified each
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sample with a three-digit random numerical codes with the tasting order semi-
randomized (two blocks of 11 beers each) (Gonzalez Viejo and others 2016). All beer
samplewved just after beer bottles were opened in International Standard Wine
Tasting Gi Bormioli and one at a time for an independent assessment. A total
of 21 %s%were evaluated, however, for this paper only ten descriptors were used
(Table Z)me are the attributes affected by or related to foamability. For this study,
only one freplicdte was analyzed as the results from the standard error of the mean
(SEM) were between 0.17 and 1.49 (Table S2). Furthermore, an ANOVA and least
significan fegences (LSD) test (a = 0.05) were conducted using the SAS® 9.4

software gstitute Inc. Cary, NC. USA) to find significant differences between

samples descriptor. There were significant differences between samples for all

descriptor!; which indicates that the range of beer samples was adequate for modelling
Purposes.mesults can be found in the supplementary material (Table S2).

Table 2. Sensofy descriptors obtained by agreement of a trained sensory panel, which are directly
related toEbility properties of beer and their abbreviation.

2.3 M ata analysis

A SUItivariate data analysis based on principal components analysis (PCA) was
performe a customized Matlab® code (Fuentes Unpublished). Factor loadings for

the two incipal components used to construct the PCA can be found in Table S3

entary material. A correlation matrix was developed in Matlab® to find

and the tﬁry descriptors (Table 2). Mean values of the parameters measured with

as supple

significan tions (p < 0.05) between the 15 parameters measured with RoboBEER

RoboBEE om sensory descriptors can be found in the supplementary material
(Table S1 ). For the parameters measured with RoboBEER the SD between the
three bo ach sample are presented.

2.4 Artificial Neural Networks

This article is protected by copyright. All rights reserved.



The Matlab Neural Network Toolbox™ 7 (Mathworks, Inc., Matick. MA, USA)
fitting tool was used to develop an ANN regression model to predict the sensory
descripwe 2) intensities using 15 parameters as inputs: MaxVol, TLTF, LTF,
FDrain, LdBubb, SmBubb, CO,, OH, L, a, b and R, G, B, obtained using the
RoboBl#Wlues for sensory descriptors as targets from Table 2. For this model the
Levenberwardt training algorithm was used along with a random data division of
70% (n 6) d for training, 15% (n = 10) for validation with a mean squared error
performance algorithm and 15% (n = 10) for testing using a default derivative function.
After tes dj

using thrﬁn neurons as the results using the four options were similar (Fig. 1).
[

Statistica

rent number of neurons (10, 7, 5 and 3), the model was developed

used to evaluate the accuracy of these models consisted in the

correlatio! (R) and determination (R?) coefficients, mean squared error (MSE), slope and

p-value omusing Matlab®.

Fig. 1 Feedféi network model diagram with two layers and sigmoid functions using three
hidden ten outputs for regression models. A total of 15 inputs from RoboBEER: i)
MaxVol, ii) TLTF, iii) LTF, iv) FDrain, v) LgBubb, vi) MedBubb, vii) SmBubb, viii) CO,, ix) OH, x) L,

xi) a, xii) ) R, xiv) G, and xv) B and ten targets from sensory descriptors (Table 2) were

used to crNN model.

3.0 RErD DISCUSSION
3.1 Mu/tiﬁriate iata analysis

Figures 5 and 2b show the PCA and correlation matrix using 15 RoboBEER

parameters: i

MaxVol, ii) TLTF, iii) LTF, iv) FDrain, v) LgBubb, vi) MedBubb, vii)
SmBul @ CO,, ix) OH, x) L, xi) a, xii) b and xiii) R, xiv) G, and xv) B and ten
sensory descriptOrs (Table 2). The principal component one (PC1) represented 40.1% of

data variability, while principal component two (PC2) accounted for 23.4%, thus the PCA

represented 64% of total data variability. From the PCA in Fig. 2a and factor loadings in

This article is protected by copyright. All rights reserved.
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Table S3, PC1 is characterized mainly by yeas, hops and grains aromas as well as color
lightness on the positive side of the axis, and sweet and sour tastes along with the color
paramMR and G) on the negative side. On the other hand, the PC2 is
characterbble size and foam drainage on the positive side, and foam-related
paramﬁemboth the RoboBEER and sensory descriptors (MaxVol, TLTF, OH, MCarb
and CVisw negative side. However, a weakness found in this analysis was that
the scoregrof th@ factor loadings were within a range of 0.02 - 0.29 for PC1 and 0.01 -

0.37 for PCZ which are considered as weak or poor scores (Comrey and Lee 2013).

SC

Fig a shows a separation of the samples according to the type of

Gl

fermentation (tgp: circles and dotted line; bottom: squares and dashed line; two groups

of spont triangles and solid and long dashed lines) that, however, have

1

differenc g them. These results and the differences found in the ANOVA (Table

S2) indi t the samples have a wide range of characteristics in terms of

a

foamability, coOlor and sensory descriptors that allow the modelling of the data. It is
important as a limitation of the study, that only one replication was made for the

descri ry session, therefore, the reliability of the panel cannot be assured.

M

However, when combining all sensory results with the RoboBEER parameters, the

I

relations een the parameters and the separation of samples are in accordance

with litera

n Fig. 2a, the group of bottom fermentation beers had more foam

.

draina refore, lower foam stability and CO, than the top and spontaneous

|

fermentatifon, this is mainly due to the differences in the process (fermentation time,

temperature andifiltration, carbonation), and type of yeast (Bamforth and others 2011).

B

Top fermen beers presented higher bitterness, hops aroma and flavor, and

astring hich are common attributes in this type of beers (Perozzi and Beaune

N

2012a; Perozzi and Beaune 2012b). On the other hand, the first group of lambic beers
(LG, LC, LF and LG) had more sweetness and sour taste, whilst the group of OG, OT and

OK present sour taste and a higher MCarb, and CVisc and, therefore, more foam stability

This article is protected by copyright. All rights reserved.
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and volume (MaxVol, TLTF, LTF). The separation into two groups for spontaneous
fermentations might be due to the differences in alcohol content as the first group (LG,
LC, LF Mad lower alcohol content (2.5% - 4.5%) compared to the second group

(6.0% - 8 nother reason for the differences within this type of beers might be due

P

to the @rWon that uses wild yeast from the environment of the region where the

beer is p which makes it more difficult to have very similar descriptors among

different @s (De Keersmaecker 1996).

Thmve and significant (p < 0.05) correlation between the viscosity (CVisc)

and foam-r€latéd parameters such as MaxVol, TLTF and LTF (R = 0.75, R = 0.77 and R
= 0.53, respeclively), and the negative correlation with FDrain (R = -0.77) can be
attributedCe fact that the surfactant substances, such as proteins and

carbohydn

thereforemuting to foam stability, hence, the higher the viscosity the higher the
b

foam stability and the lower foam drainage (Fig. 2b) (Delcour and Hoseney 2010;
Depraeter others 2004). Furthermore, there was a positive correlation between
TSwee MaxVol and LTF (R = 0.49 and R = 0.58, respectively); likewise,

TSweet had a positive correlation with SmBubb (R = 0.56), which at the same time was

ntained in beers are able to increase the viscosity of the liquid and,

positivelyhed with LTF (R = 0.50); all this this is related to the contribution of
carbohydy @ foam stability, which is achieved because sugars are able to increase

the viscosit the bulk phase and reduce the rate of liquid drainage in the lamella

(Badui 2 ; Bamforth and others 2011). In the case of small bubbles, these contribute
to foan“ss, which give a higher foam stability (Depraetere and others 2004).
On the large bubbles produce a coarse foam, which, at the same time,
decrease cosity and cause an increased rate of foam drainage that coincides with
the n@relation between CVisc and LgBubb (R = -0.45) and the positive
correlation betWeen FDrain and LgBubb (R = 0.43) (Bamforth, 1985). The positive
correlation between TSour and MaxVol (R = 0.64), TLTF (R = 0.56), and LTF (R = 0.62)

is related to the influence that pH has on the foamability in beer as, the closer the

This article is protected by copyright. All rights reserved.
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protein to its isoelectric pH, the higher the foam stability (Badui 2006; Gonzalez Viejo

and others 2017).

Th se of CO, had a positive correlation (R = 0.62) with the carbonation
mouthfee which would indicate that the amount of carbonation in the beer was
accuraf® ed by the trained panel. The positive correlation of TSweet with red
color (R a = 0.52 and R = 0.76, respectively) were consistent with results found
by Abeytilakarafifina et al. (2013) in which Brix content had a direct correlation with red
color in fg#it the red colored beers used in this study have red fruits juice within
their ingredients. Finally, the correlation between the AGrains and AHops with color
parameters coiniides with the contribution that malted barley and hops (tannins) have

to the coelceers as, the malted barley exposed to high temperatures during kilning

in the br -process goes through to the Maillard reaction and, in some cases, the
caramelizati d pyrolysis of sugars, which cause the brown color to be higher or

lower dependifig on the time and temperatures used during this stage of brewing (Fig.

2b) (Piggo ).

Fig. 2 Mulmdata analysis showing: a) PCA from the RoboBEER foam and color parameters:

i) maximuDe of foam (MaxVol), ii) total lifetime of foam (TLTF), iii) lifetime of foam (LTF),

iv) foam d
bubblejﬂin the foam, viii) CO,, ix) alcohol content (OH), and color parameters in both
scales Lab (L, a, b) and xiii, xiv and xv) RGB. The samples abbreviations are listed in

Table 1Med by type of fermentation (top: circles, bottom: squares and spontaneous:

(FDrain), v) number of large (LgBubb), vi) medium (MedBubb) and vii) small

triangles), x-axisWrepresents principal component one (PCl) and y-axis represents principal
component two (PC2); and b) correlation matrix showing the descriptors in both axes and the
lation values in the color bar in which black represents positive and light gray
negative corre s. Dark gray descriptors in both figures represent the RoboBEER parameters,

while the light gray descriptors represent the sensory attributes studied (Table 2).
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3.2 Artificial Neural Networks model development

Asihowgin Fig. 3a, a high overall correlation and determination coefficients (R =
0.91, R? = were obtained using the 15 foam-related and color parameters from
the Roonwputs and ten sensory descriptors (Table 2) as targets, which is
consis@nme levels of correlation found among these parameters (Figs. 2a and

2b). The btained for the correlation were consistent even after several retraining

attempts,@wore, data were tested both normalized and non-normalized, obtaining

similar reg@l ata not shown). Additionally, the MSE, correlation and determination

coefficient Valu€s for all stages and overall model are shown in Table 3. Although the

MSE values appiar to be high, the errors for the model training, validation and testing

stages we ally distributed (Fig. 3b). The slope for the overall model was 0.98 and
o

was stati gnificant with a p-value < 0.0001.

Table 3. $tat @ data for the artificial neural networks model showing the correlation (R) and

Lo 2

determ coefficients and means squared error (MSE) for the training, validation and

testing stages, overall model.

Fig. 3 Results from artificial neural networks showing (a) the overall model obtained with a high
correlationgR = 0.91). Both axes represent the 15-point scale used for the ten sensory descriptors

with the x-axis corresponding to the data from the trained sensory panel (observed) and the y-

axis the @jelled data (estimated). (b) The error histogram that presents a normal

distribution i the x - axis represents the errors calculated as observed minus estimated.

| would allow prediction of the level of intensity of ten different sensory
descripMe 2) that are representative of beer quality using parameters obtained
automatically erh RoboBEER. The model developed meets some specifics that the ANN
requires to overfitting such as: i) the number of inputs (inputs = 15) needs to be
smalle{number of samples used for the training stage (n = 46), ii) the network
is small enough to avoid having enough power to overfit the model. The advantage of

this type of ANN is that it consists of three different stages: i) training which is used to

compute the gradient and update the weights and biases, ii) validation used to minimize

This article is protected by copyright. All rights reserved.
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the error and prevent overfitting by monitoring the validation error in the training stage

and iii) testing which is used to compare different models (Beale and others 2017).

Th ntages of ANN modelling over other linear and non-linear methods are
that it all ate a single multi-target model function that can be fed with new
data t&"o merical values for the prediction of every single target. Furthermore,
the mode rn and find further patterns when more data is included, however, it

has to beWmonitdred to avoid having a very large database that could cause overfitting,
and hen thening the accuracy of new predictions, and profiling in this way
specific smt are desired by consumers of specific brewing companies. In the
industry, it is SJmmon that the evaluation of beer quality in terms of sensory is

performe by the master brewer who tastes the samples and decides whether the
beer mee xpected descriptors or not, however, this is highly subjective, usually

relies in wo assessors, and does not provide quantitative and consistent data

that can be asSessed later in time by other people within the company. Therefore, the
models de d in this study would contribute to reduce the variability due to human
error increase the accuracy of replicability of measurements, furthermore, the

use of RoboBEER to predict intensities of sensory descriptors would provide both

physicochhnd sensory parameters, which would give more objective information

about the @ of all batches produced. The implementation of this method would also

be available 0n request and under data security policies, to small, medium and large
brewin anies that will generate a comprehensive database of samples that could

contribM sustained improvement of existing products and the development of

new prodgupply a growing brewing market.

5.0 CONCL N

The ic pourer for beer (RoboBEER) coupled with machine learning modelling
techniques, showed to be effective and accurate to assess beer quality in terms of its

color, foamability and related sensory descriptors. Although this method does not intend

This article is protected by copyright. All rights reserved.
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to completely replace the use of traditional sensory techniques with humans, it can
potentially be used as a rapid method at the end of the production line for beer

processMess samples from every single batch. The ANN model obtained would

also aIIoermination of levels of intensity of the most relevant sensory

descrip‘ormigated straight from the final product as well as its use as a screening

differenc

method tw differences between products to decide whether or not to conduct a
est case of product development without the need of gathering trained
an

panelists me-consuming data analysis, which makes the method more reliable and

replicable s4lime consuming and more cost effective. Finally, the RoboBEER can

handle remsampling and it does not suffer from fatigue as human panelists, which

helps to ore consistent, representative and repeatable results that will help the

industry ifl achieving their specific quality more efficiently.
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Country of Packaging type Alcohol
Type/Subtype Label / Code
Origin / Net Content Content
Q Top Fermentation
Brown glass
b Belgium L 6.6%
bottle 330 mL
Brown glass
India Australia IP 6.2%
: D bottle 330 mL
Brown glass
P Poland z 9.5%
bottle 330 mL
Brown glass
sch Australia P 4.6%
bottle 330 mL
g g s Brown glass
Red"Al USA RT 5.8%
bottle 330 mL
E Brown glass
Australia SA 4.5%
bottle 330 mL
L Brown glass
Age Scotland IG 6.6%
bottle 330 mL
Brown glass
Sparfling Ale Australia Cs 5.8%
bottle 375 mL
I Bottom Fermentation
3 Clear glass bottle
Lager Mexico Cc 4.5%
355 mL
Green glass
Lager Mexico XX 4.5%

bottle 330 mL
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Brown glass
USA BL 5.2%
bottle 355 mL

Green glass
Netherlands H 5.0%
bottle 330 mL

Green glass
Czech Republic BC 5.0%
bottle 330 mL

(]

cript

Green glass
ol Germany BB 0.3%
bottle 330 mL

Lager L

S

Green glass
Pilsner Czech Republic PU 4.4%
bottle 330 mL

U

N

Spontaneous Fermentation

Green glass
Lam Belgium LC 3.5%
bottle 375 mL

Green glass
Belgium LF 2.5%
bottle 375 mL

M

Green glass
Lambi Belgium LG 4.5%
bottle 375 mL

or

Green glass
Lambj i Belgium LK 3.5%
bottle 375 mL

N

Green glass
Lambic Kriek Belgium OK 6.0%
bottle 375 mL

Ut

Green glass
Belgium 0G 6.0%
bottle 375 mL

Lambij

A

Green glass
Lambic Gueuze Belgium oT 6.5%
bottle 375 mL
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Table 2. Sensory descriptors obtained by agreement of a trained sensory panel, which are directly

related to foamability properties of beer and their abbreviation.

{

Descriptor

Abbreviation

Qr taste

G

S

U

0

d

TBitt
s Sweet taste TSweet
ur taste TSour
oma Grains AGrains
roma Hops AHops
Aroma Yeast AYeast
iscosity CVisc
tringency MAstr
Carbonation mouthfeel MCarb
avor Hops FHops

M

Table 3. ftistical data for the artificial neural networks model showing the correlation (R) and

determination (R“) coefficients and means squared error (MSE) for the training, validation and

testing sta @ overall model.

;! Samples

Means squared

Correlation

Determination

- error (MSE) coefficient (R) coefficient (R?)
e
Traini 46 0.98 0.92 0.85
Validation 10 1.55 0.87 0.76
ﬁ{ 10 1.00 0.93 0.86
Overall 66 0.90 0.91 0.83
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It Hiddenlayer  OutptLayer oty

A
Y +/> a0
b

RoboBEER SIS
Drmetr ] 10 deseipos

Mackel gBubh Thit Aeast

TITF MedBubo Toiest (Vi

T SmBubk T50ur - NAstr

i [ R AGraing MCaro

3 G Aops - FHons

0 b B
e e tp“l T
MaxVol, ii) TLTF, iii) LTF, iv) FDrain, v) LgBubb, vi) MedBubb, vii) SmBubb, viii) CO,, ix) OH, x) L,

xi) a, x xiii) R, xiv) G, and xv) B and ten targets from sensory descriptors (Table 2) were

used to create
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0.3 MedBubb
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Coerrelation Ceefficient (r)

ol

Descriptors

Fig. 2 Mulivani data analysis showing: a) PCA from the RoboBEER foam and color parameters:
i) maximu e of foam (MaxVol), ii) total lifetime of foam (TLTF), iii) lifetime of foam (LTF),
iv) foam e (FDrain), v) number of large (LgBubb), vi) medium (MedBubb) and vii) small
bubbles (SmBubb) in the foam, viii) CO,, ix) alcohol content (OH), and color parameters in both
scales x, xi, xii) CieLab (L, a, b) and xiii, xiv and xv) RGB. The samples abbreviations are listed in

Table 1 and grouped by type of fermentation (top: circles, bottom: squares and spontaneous:
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triangles), x-axis represents principal component one (PCl) and y-axis represents principal
component two (PC2); and b) correlation matrix showing the descriptors in both axes and the

signific

1

on values in the color bar in which black represents positive and light gray
negative ¢ s. Dark gray descriptors in both figures represent the RoboBEER parameters,

while the li criptors represent the sensory attributes studied (Table 2).

P

Author Manuscr
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Fig. 3 Results artificial neural networks showing (a) the overall model obtained with a high

correlation (R = 0.91). Both axes represent the 15-point scale used for the ten sensory descriptors

with the x-axis corresponding to the data from the trained sensory panel (observed) and the y-
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axis the ANN modelled data (estimated). (b) The error histogram that presents a normal

distribution in which the x - axis represents the errors calculated as observed minus estimated.
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