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ABSTRACT 

Sensory attributes of beer are directly linked to perceived foam–related parameters and 

beer color. The aim of this study was to develop an objective predictive model using 

machine learning modelling to assess the intensity levels of sensory descriptors in beer 

using the physical measurements of color and foam-related parameters. A robotic pourer 

(RoboBEER), was used to obtain 15 color and foam–related parameters from 22 different 

commercial beer samples. A sensory session using quantitative descriptive analysis 

(QDA®) with trained panelists was conducted to assess the intensity of ten beer 

descriptors. Results showed that the PCA explained 64% of data variability with 

correlations found between foam–related descriptors from sensory and RoboBEER such 

as the positive and significant correlation between carbon dioxide and carbonation 

mouthfeel (R = 0.62), and between viscosity from sensory, and maximum volume of 

foam and total lifetime of foam (R = 0.75, R = 0.77, respectively). Using the RoboBEER 

parameters as inputs, an Artificial Neural Network (ANN) regression model showed high 

correlation (R=0.91) to predict the intensity levels of ten related sensory descriptors 
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such as yeast, grains and hops aromas, hops flavor, bitter, sour and sweet tastes, 

viscosity, carbonation and astringency.  

Practical applications 

This paper is a novel approach for food science using machine modelling techniques that 

could contribute significantly to rapid screenings of food and brewage products to the 

food industry and the implementation of Artificial Intelligence (AI). The use of RoboBEER 

to assess beer quality showed to be a reliable, objective, accurate and less time-

consuming method to predict sensory descriptors compared to trained sensory panels. 

Hence, this method could be useful as a rapid screening procedure to evaluate beer 

quality at the end of the production line for industry applications. 

Keywords: artificial neural networks; beer foam; sensory analysis; robotics; beer color 

1.0 INTRODUCTION 

 Beer is the most consumed alcoholic beverage worldwide in terms of volume 

representing 78% of total volume sales. Moreover, consumers are constantly looking for 

new options of beer, hence the industry focuses heavily on the development of new 

products or improving existing ones (Euromonitor-International 2016). However, this 

brewage is very complex in terms of specific sensory descriptors due to the diversity of 

ingredients used in the manufacturing process, such as malt, hops and yeast as well as 

the possible addition of adjuncts such as other cereals, flavors, fruit juices, among 

others (Delcour and Hoseney 2010). The assessment of sensory attributes of beer is 

relevant as they are an indicator of beer quality, especially the visual characteristics such 

as foam-related parameters, which, at the same time are closely linked to flavors, tastes 

such as bitter, sour and sweet, aromas due to the capacity of foam to release them, and 

mouthfeel given by the carbonation and foamability (Baert and others 2012; Cooper and 

others 2002; Gonzalez Viejo and others 2016; Gonzalez Viejo and others 2017) 
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 The raw materials used for the beer brewing contribute chemical compounds such 

as proteins, carbohydrates, alcohol, among others, which affect the sensory 

characteristics of the final product (Bamforth 2011). Hops are one of the crucial 

ingredients of brewing, which contributes the characteristic bitter taste from iso-alpha 

acids. These iso-alpha acids as well as malts contribute to the characteristic color of 

different styles of beer and may lead to specific astringency levels. Additionally, iso-

alpha acids have specific tensio-active properties, which contribute to foam formation, 

stability and lacing. Hops also contain essential oils that contribute to the complexity of 

aromas and flavors found in beer (De Keukeleire 2000; Bamforth and others 2011).  

 The type of fermentation (top, bottom or spontaneous), the type of yeast used, 

alongside with the original gravity and degree of attenuation (which defines the alcohol 

content), determine the sweetness level of the final product. These two parameters have 

an inverse relationship, hence the lower the alcohol content, the higher the sweetness, 

as they depend on the amount of fermentable sugars consumed by yeasts. As yeasts 

consume sugars, carbon dioxide is produced. Therefore, a higher amount of fermentable 

sugars in the wort can lead to a higher carbonation in the final beer. Proteins and 

carbohydrates derive mainly from malt and they constitute almost solely for the body or 

viscosity of beers, which, at the same time, is highly linked with the foam stability 

(Delcour and Hoseney 2010). The interest in studying foamability in beers relies on the 

influence of foam formation and stability over other critical sensory components. Foam 

plays a fundamental role in releasing aromas and to preserve flavor and taste, since with 

reduced foamability, the beer comes in direct contact with the oxygen from the air and 

thus it starts to oxidize during its consumption, which results in the appearance of off – 

flavors (Gonzalez Viejo and others 2016; Gonzalez Viejo and others 2017; Okada and 

others 2008; Ortiz and others 2003). 

 The current demand for higher quality beers worldwide has increased the need for 

new and more effective methods to assess their sensory descriptors and quality traits. 

Descriptive sensory tests such as quantitative descriptive analysis (QDA®) and 
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Spectrum™ have been used as tools to evaluate quality of beers and to ensure the 

uniformity amongst different batches (Medoro and others 2016). However, these tests 

require a panel of 10 – 16 people with extensive training, which is time consuming and 

expensive (Piper and Scharf 2004). Rapid sensory methods such as Napping® and 

sorting have been reported to give reliable data without the requirement of a trained 

panel. However, these methods are used to find similarities or differences within a set of 

samples that need to be evaluated in a single session and require a limited number of 

samples (Antúnez and others 2015; Giacalone and others 2013).  

 Artificial neural networks (ANN) are a type of machine learning algorithm that 

have the ability to simulate the processing techniques of the human brain, giving it the 

capacity to find non-linear relationships within a set of parameters and targets (Lin and 

others 2012). This method has been actively applied for a wide range of purposes such 

as diagnostic of diseases (Khan and others 2001), prediction of weather (Tokar and 

Johnson 1999; Kuligowski and Barros 1998), among others. It has also been proposed 

as an alternative way for more objective beer classification according to quality traits 

such as alcohol content, pH and CO2  (Garcia and others 1995), according to 

fermentation type (Gonzalez Viejo and others 2016) and to predict specific compounds in 

beer, such as acetic acid (Zhang and others 2012). Furthermore, ANN has been used to 

develop models to predict volatile fingerprinting using gas chromatography (Cajka and 

others 2010), to predict chemometrics such as pH, alcohol content, maximum volume of 

foam and Brix using near-infrared absorbance values within 1600 and 2400 nm as inputs 

(Gonzalez Viejo and others 2017), and to predict alcohol content and real extract using 

mid- and near-infrared (Iñón and others 2006). In those three studies, the ANN models 

were compared with other methods such as partial least squares regression and linear 

discriminant analysis, being ANN the most accurate method in all cases. Therefore, 

appropriate models based on these types of algorithms can be based on rapid 

measurements of beer parameters such as foamability and color, which can be obtained 

using the RoboBEER. 
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 This paper discusses the development of machine learning modelling techniques, 

specifically, artificial neural networks (ANN) to predict ten related sensory descriptors in 

beer using 15 parameters including foamability, alcohol, carbon dioxide (CO2) and color 

measured using a robotic pourer, RoboBEER (Gonzalez Viejo and others 2016). The 

objective of the machine learning models developed is to allow more efficient 

assessment of samples at the end of the production line to have accurate results for 

sensory descriptors such as viscosity, carbonation, astringency, bitterness, sourness, 

sweetness and aromas like yeast, hops and grains to use as a rapid method to assess 

beer quality.  

2.0 MATERIALS AND METHODS 

 A set of 22 beer samples (Table 1) from three types of fermentation (8 from top, 

7 from bottom and 7 from spontaneous) were used for sensory descriptive analysis. Each 

beer was sampled in triplicate to measure all foam-related parameters to reduce bias 

due to sealability and / or other packaging related variability.  

Table 1. Beer samples used classified by type, subtype and country of origin as well as their 

packaging and net content with their respective abbreviation. 

2.1 Foamability assessment 

 To measure all foam-related parameters using computer vision algorithms from 

pouring videos, a robotic pourer RoboBEER was used. RoboBEER is able to pour a 

constant amount of beer (80 ± 10 ml) and monitor liquid temperature, alcohol and CO2 

release in real time using sensors controlled by Arduino boards® (Arduino, Italy). In 

parallel, videos of the pouring process and up to five minutes afterwards are recorded 

using an iPhone 5S (Apple Inc., Cupertino. CA. USA). The post analysis of videos is 

based on customized computer vision algorithms written in Matlab® ver. 2016a 

(Mathworks, Inc., Matick. MA, USA). This robotic pourer is capable of giving a total of 15 

parameters related to foamability and color of beer, such as maximum volume of foam 

(MaxVol), total lifetime of foam (TLTF), lifetime of foam (LTF), foam drainage (FDrain), 
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number of large (LgBubb), medium (MedBubb) and small bubbles (SmBubb) in the 

foam, CO2 release, alcohol content (OH), and beer color parameters in both scales 

CieLab (L, a, b) and RGB respectively.  

 The analysis from the RoboBEER consists of three parts, i) data acquisition from 

the sensors (temperature, alcohol and CO2) using the CoolTerm terminal application ver. 

1.4.3 (Meier), ii) processing of one frame at the peak pouring volume obtained from the 

video to analyze the average color of a section of the center region of the liquid in both 

scales (RGB and CieLab) and iii) analysis of foam and bubble related parameters from 

the pouring video. To analyze the foamability, the video was first processed using a 

semi-supervised algorithm that consists on the initial scaling to convert height into 

volume followed by the manual selection of foam height every 1 second (30 frames), this 

allows the code to automatically calculate volume of foam and liquid. After this process, 

the code calculates the resulting volumes into TLTF, LTF, MaxVol and FDrain by analyzing 

the area below the curve of foamability and relevant parameters. Finally, the frame with 

the maximum volume of foam obtained from the video is analyzed based on the “Hough 

Transformation” algorithm to obtain bubble size and distribution within the visible foam 

in the glass wall (Condé and others 2017). A more detailed description of the RoboBEER 

methodology and performance is found in work from Gonzalez Viejo et al. (2016).  

2.2 Sensory evaluation 

 A sensory session for descriptive analysis was carried out to assess all beer 

samples. The sensory session and training were carried out in the sensory lab facilities of 

the Faculty of Veterinary and Agricultural Sciences of The University of Melbourne, 

Australia (FVAS – UoM). A questionnaire using a 15 cm non-structured scale was 

implemented through a biometric-sensory application (bio-sensory App) (Torrico and 

others 2017) designed for Tablet PCs (Android) and developed by the sensory group 

belonging to the School of Agriculture and Food within the FVAS - UoM. A sensory panel 

of 12 participants that were prescreened to be regular beer consumers, were able to 
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verbalize descriptors, and that had previous experience in similar tests, was used to 

conduct the session. These panelists were trained to detect basic tastes and aromas 

using the International Standard methodology (ISO 8586-1: 1993E Sensory analysis -- 

General guidelines for the selection, training and monitoring of selected assessors and 

expert sensory assessors, and quality control procedures) (ISO 1993), this training was 

conducted in five sessions of 60 mins each. The general training consisted of basic tastes 

using sodium chloride for salty, sucrose for sweet, caffeine for bitter, monosodium 

glutamate for umami and citric acid for sour taste using the dilutions suggested in the 

above mentioned International Standard. Furthermore, the training included the 

familiarization with different aromas generally found in beer using the Le Nez du Vin®: 

Wine Aroma kit (Le Nez du Vin, France) including aromas such as fruity (lemon, cherry, 

apple, orange), floral (acacia, honey, rose, violet), vegetal and spicy (yeast, cedar, pine, 

cut hay, clove), animal notes (butter, leather) and roasted notes (toast, caramel, coffee, 

smoke), among others. 

The selection of descriptors for the test was carried out using the quantitative 

descriptive analysis (QDA®) method in blind tasting sessions using the different beer 

samples to generate consensus and agreement on a set of the most relevant attributes. 

For the QDA®, the training sessions and selection of descriptors consisted of seven 

sessions of 60 mins each and divided as follows: i) two sessions were dedicated for top 

fermentations beers, ii) two sessions for bottom fermentation, iii) two sessions for 

spontaneous fermentation samples, and iv) one more session for a mix of all types of 

beers. To assess the panel performance during the training, a combination of cluster 

analysis, standard deviation, ANOVA and spider chart (data not shown) were developed 

to assess significant differences within the panelists for each descriptor. 

A single double-blind sensory session was conducted to evaluate the intensity of 

the different descriptors for the 22 beer samples used in this study (Table 1). The 

samples were served at refrigeration temperature (~4°C) and covered with aluminum 

foil by an independent person that did not participate in the session, which codified each 
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sample with a three-digit random numerical codes with the tasting order semi-

randomized (two blocks of 11 beers each) (Gonzalez Viejo and others 2016). All beer 

samples were served just after beer bottles were opened in International Standard Wine 

Tasting Glasses Luigi Bormioli and one at a time for an independent assessment. A total 

of 21 descriptors were evaluated, however, for this paper only ten descriptors were used 

(Table 2) as these are the attributes affected by or related to foamability. For this study, 

only one replicate was analyzed as the results from the standard error of the mean 

(SEM) were between 0.17 and 1.49 (Table S2). Furthermore, an ANOVA and least 

significant differences (LSD) test (α = 0.05) were conducted using the SAS® 9.4 

software (SAS Institute Inc. Cary, NC. USA) to find significant differences between 

samples for each descriptor. There were significant differences between samples for all 

descriptors, which indicates that the range of beer samples was adequate for modelling 

purposes. These results can be found in the supplementary material (Table S2). 

Table 2. Sensory descriptors obtained by agreement of a trained sensory panel, which are directly 

related to foamability properties of beer and their abbreviation. 

2.3 Multivariate data analysis 

 A multivariate data analysis based on principal components analysis (PCA) was 

performed using a customized Matlab® code (Fuentes Unpublished). Factor loadings for 

the two major principal components used to construct the PCA can be found in Table S3 

as supplementary material. A correlation matrix was developed in Matlab® to find 

significant correlations (p < 0.05) between the 15 parameters measured with RoboBEER 

and the ten sensory descriptors (Table 2). Mean values of the parameters measured with 

RoboBEER and from sensory descriptors can be found in the supplementary material 

(Table S1 and S2). For the parameters measured with RoboBEER the SD between the 

three bottles of each sample are presented.  

2.4 Artificial Neural Networks 
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 The Matlab Neural Network Toolbox™ 7 (Mathworks, Inc., Matick. MA, USA) 

fitting tool was used to develop an ANN regression model to predict the sensory 

descriptors (Table 2) intensities using 15 parameters as inputs: MaxVol, TLTF, LTF, 

FDrain, LgBubb, MedBubb, SmBubb, CO2, OH, L, a, b and R, G, B, obtained using the 

RoboBEER and values for sensory descriptors as targets from Table 2. For this model the 

Levenberg-Marquardt training algorithm was used along with a random data division of 

70% (n = 46) used for training, 15% (n = 10) for validation with a mean squared error 

performance algorithm and 15% (n = 10) for testing using a default derivative function. 

After testing different number of neurons (10, 7, 5 and 3), the model was developed 

using three hidden neurons as the results using the four options were similar (Fig. 1). 

Statistical data used to evaluate the accuracy of these models consisted in the 

correlation (R) and determination (R2) coefficients, mean squared error (MSE), slope and 

p-value obtained using Matlab®. 

 

Fig. 1 Feedforward network model diagram with two layers and sigmoid functions using three 

hidden neurons and ten outputs for regression models. A total of 15 inputs from RoboBEER: i) 

MaxVol, ii) TLTF, iii) LTF, iv) FDrain, v) LgBubb, vi) MedBubb, vii) SmBubb, viii) CO2, ix) OH, x) L, 

xi) a, xii) b and xiii) R, xiv) G, and xv) B and ten targets from sensory descriptors (Table 2) were 

used to create the ANN model.  

3.0 RESULTS AND DISCUSSION 

3.1 Multivariate data analysis 

 Figures 2a and 2b show the PCA and correlation matrix using 15 RoboBEER 

parameters: i) MaxVol, ii) TLTF, iii) LTF, iv) FDrain, v) LgBubb, vi) MedBubb, vii) 

SmBubb, viii) CO2, ix) OH, x) L, xi) a, xii) b and xiii) R, xiv) G, and xv) B and ten 

sensory descriptors (Table 2). The principal component one (PC1) represented 40.1% of 

data variability, while principal component two (PC2) accounted for 23.4%, thus the PCA 

represented 64% of total data variability. From the PCA in Fig. 2a and factor loadings in 
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Table S3, PC1 is characterized mainly by yeas, hops and grains aromas as well as color 

lightness on the positive side of the axis, and sweet and sour tastes along with the color 

parameters (a, R and G) on the negative side. On the other hand, the PC2 is 

characterized by bubble size and foam drainage on the positive side, and foam-related 

parameters from both the RoboBEER and sensory descriptors (MaxVol, TLTF, OH, MCarb 

and CVisc) on the negative side. However, a weakness found in this analysis was that 

the scores of the factor loadings were within a range of 0.02 – 0.29 for PC1 and 0.01 – 

0.37 for PC2 which are considered as weak or poor scores (Comrey and Lee 2013).  

Figure 2a shows a separation of the samples according to the type of 

fermentation (top: circles and dotted line; bottom: squares and dashed line; two groups 

of spontaneous: triangles and solid and long dashed lines) that, however, have 

differences among them. These results and the differences found in the ANOVA (Table 

S2) indicate that the samples have a wide range of characteristics in terms of 

foamability, color and sensory descriptors that allow the modelling of the data. It is 

important to note as a limitation of the study, that only one replication was made for the 

descriptive sensory session, therefore, the reliability of the panel cannot be assured. 

However, when combining all sensory results with the RoboBEER parameters, the 

relationship between the parameters and the separation of samples are in accordance 

with literature.   

As seen in Fig. 2a, the group of bottom fermentation beers had more foam 

drainage and therefore, lower foam stability and CO2 than the top and spontaneous 

fermentation, this is mainly due to the differences in the process (fermentation time, 

temperature and filtration, carbonation), and type of yeast (Bamforth and others 2011). 

Top fermentation beers presented higher bitterness, hops aroma and flavor, and 

astringency, which are common attributes in this type of beers (Perozzi and Beaune 

2012a; Perozzi and Beaune 2012b). On the other hand, the first group of lambic beers 

(LG, LC, LF and LG) had more sweetness and sour taste, whilst the group of OG, OT and 

OK present sour taste and a higher MCarb, and CVisc and, therefore, more foam stability 
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and volume (MaxVol, TLTF, LTF). The separation into two groups for spontaneous 

fermentations might be due to the differences in alcohol content as the first group (LG, 

LC, LF and LG) had lower alcohol content (2.5% – 4.5%) compared to the second group 

(6.0% - 6.5%). Another reason for the differences within this type of beers might be due 

to the fermentation that uses wild yeast from the environment of the region where the 

beer is produced, which makes it more difficult to have very similar descriptors among 

different breweries (De Keersmaecker 1996).  

The positive and significant (p < 0.05) correlation between the viscosity (CVisc) 

and foam-related parameters such as MaxVol, TLTF and LTF (R = 0.75, R = 0.77 and R 

= 0.53, respectively), and the negative correlation with FDrain (R = -0.77) can be 

attributed to the fact that the surfactant substances, such as proteins and 

carbohydrates, contained in beers are able to increase the viscosity of the liquid and, 

therefore, contributing to foam stability, hence, the higher the viscosity the higher the 

foam stability and the lower foam drainage (Fig. 2b) (Delcour and Hoseney 2010; 

Depraetere and others 2004). Furthermore, there was a positive correlation between 

TSweet, and the MaxVol and LTF (R = 0.49 and R = 0.58, respectively); likewise, 

TSweet had a positive correlation with SmBubb (R = 0.56), which at the same time was 

positively correlated with LTF (R = 0.50); all this this is related to the contribution of 

carbohydrates to foam stability, which is achieved because sugars are able to increase 

the viscosity of the bulk phase and reduce the rate of liquid drainage in the lamella 

(Badui 2006; Bamforth and others 2011). In the case of small bubbles, these contribute 

to foam creaminess, which give a higher foam stability (Depraetere and others 2004). 

On the contrary, large bubbles produce a coarse foam, which, at the same time, 

decrease the viscosity and cause an increased rate of foam drainage that coincides with 

the negative correlation between CVisc and LgBubb (R = -0.45) and the positive 

correlation between FDrain and LgBubb (R = 0.43) (Bamforth, 1985). The positive 

correlation between TSour and MaxVol (R = 0.64), TLTF (R = 0.56), and LTF (R = 0.62) 

is related to the influence that pH has on the foamability in beer as, the closer the 
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protein to its isoelectric pH, the higher the foam stability (Badui 2006; Gonzalez Viejo 

and others 2017).  

The release of CO2 had a positive correlation (R = 0.62) with the carbonation 

mouthfeel (MCarb), which would indicate that the amount of carbonation in the beer was 

accurately perceived by the trained panel. The positive correlation of TSweet with red 

color (R and a) (R = 0.52 and R = 0.76, respectively) were consistent with results found 

by Abeytilakarathna et al. (2013) in which Brix content had a direct correlation with red 

color in fruits, as the red colored beers used in this study have red fruits juice within 

their ingredients. Finally, the correlation between the AGrains and AHops with color 

parameters coincides with the contribution that malted barley and hops (tannins) have 

to the color in beers as, the malted barley exposed to high temperatures during kilning 

in the brewing pre-process goes through to the Maillard reaction and, in some cases, the 

caramelization and pyrolysis of sugars, which cause the brown color to be higher or 

lower depending on the time and temperatures used during this stage of brewing (Fig. 

2b) (Piggott 2011).  

 

Fig. 2 Multivariate data analysis showing: a) PCA from the RoboBEER foam and color parameters: 

i) maximum volume of foam (MaxVol), ii) total lifetime of foam (TLTF), iii) lifetime of foam (LTF), 

iv) foam drainage (FDrain), v) number of large (LgBubb), vi) medium (MedBubb) and vii) small 

bubbles (SmBubb) in the foam, viii) CO2, ix) alcohol content (OH), and color parameters in both 

scales x, xi, xii) CieLab (L, a, b) and xiii, xiv and xv) RGB. The samples abbreviations are listed in 

Table 1 and grouped by type of fermentation (top: circles, bottom: squares and spontaneous: 

triangles), x-axis represents principal component one (PC1) and y-axis represents principal 

component two (PC2); and b) correlation matrix showing the descriptors in both axes and the 

significant correlation values in the color bar in which black represents positive and light gray 

negative correlations. Dark gray descriptors in both figures represent the RoboBEER parameters, 

while the light gray descriptors represent the sensory attributes studied (Table 2). 
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3.2 Artificial Neural Networks model development 

 As shown in Fig. 3a, a high overall correlation and determination coefficients (R = 

0.91, R2 = 0.83) were obtained using the 15 foam–related and color parameters from 

the RoboBEER as inputs and ten sensory descriptors (Table 2) as targets, which is 

consistent with the levels of correlation found among these parameters (Figs. 2a and 

2b). The results obtained for the correlation were consistent even after several retraining 

attempts, furthermore, data were tested both normalized and non-normalized, obtaining 

similar results (data not shown). Additionally, the MSE, correlation and determination 

coefficient values for all stages and overall model are shown in Table 3. Although the 

MSE values appear to be high, the errors for the model training, validation and testing 

stages were normally distributed (Fig. 3b). The slope for the overall model was 0.98 and 

was statistically significant with a p-value < 0.0001.  

Table 3. Statistical data for the artificial neural networks model showing the correlation (R) and 

determination (R2) coefficients and means squared error (MSE) for the training, validation and 

testing stages, and overall model. 

Fig. 3 Results from artificial neural networks showing (a) the overall model obtained with a high 

correlation (R = 0.91). Both axes represent the 15-point scale used for the ten sensory descriptors 

with the x-axis corresponding to the data from the trained sensory panel (observed) and the y-

axis the ANN modelled data (estimated). (b) The error histogram that presents a normal 

distribution in which the x – axis represents the errors calculated as observed minus estimated. 

This model would allow prediction of the level of intensity of ten different sensory 

descriptors (Table 2) that are representative of beer quality using parameters obtained 

automatically from RoboBEER. The model developed meets some specifics that the ANN 

requires to avoid overfitting such as: i) the number of inputs (inputs = 15) needs to be 

smaller than the number of samples used for the training stage (n = 46), ii) the network 

is small enough to avoid having enough power to overfit the model. The advantage of 

this type of ANN is that it consists of three different stages: i) training which is used to 

compute the gradient and update the weights and biases, ii) validation used to minimize 
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the error and prevent overfitting by monitoring the validation error in the training stage 

and iii) testing which is used to compare different models (Beale and others 2017).  

The advantages of ANN modelling over other linear and non-linear methods are 

that it allows to create a single multi-target model function that can be fed with new 

data to obtain numerical values for the prediction of every single target. Furthermore, 

the model will learn and find further patterns when more data is included, however, it 

has to be monitored to avoid having a very large database that could cause overfitting, 

and hence strengthening the accuracy of new predictions, and profiling in this way 

specific styles that are desired by consumers of specific brewing companies. In the 

industry, it is common that the evaluation of beer quality in terms of sensory is 

performed mainly by the master brewer who tastes the samples and decides whether the 

beer meets the expected descriptors or not, however, this is highly subjective, usually 

relies in one or two assessors, and does not provide quantitative and consistent data 

that can be assessed later in time by other people within the company. Therefore, the 

models developed in this study would contribute to reduce the variability due to human 

error as well as increase the accuracy of replicability of measurements, furthermore, the 

use of RoboBEER to predict intensities of sensory descriptors would provide both 

physicochemical and sensory parameters, which would give more objective information 

about the quality of all batches produced. The implementation of this method would also 

be available on request and under data security policies, to small, medium and large 

brewing companies that will generate a comprehensive database of samples that could 

contribute to the sustained improvement of existing products and the development of 

new products to supply a growing brewing market.  

5.0 CONCLUSION 

 The robotic pourer for beer (RoboBEER) coupled with machine learning modelling 

techniques, showed to be effective and accurate to assess beer quality in terms of its 

color, foamability and related sensory descriptors. Although this method does not intend 
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to completely replace the use of traditional sensory techniques with humans, it can 

potentially be used as a rapid method at the end of the production line for beer 

processing to assess samples from every single batch. The ANN model obtained would 

also allow the determination of levels of intensity of the most relevant sensory 

descriptors investigated straight from the final product as well as its use as a screening 

method to assess differences between products to decide whether or not to conduct a 

difference test in case of product development without the need of gathering trained 

panelists and time-consuming data analysis, which makes the method more reliable and 

replicable, less time consuming and more cost effective. Finally, the RoboBEER can 

handle repetitive sampling and it does not suffer from fatigue as human panelists, which 

helps to obtain more consistent, representative and repeatable results that will help the 

industry in achieving their specific quality more efficiently.  
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Table 1. Beer samples used classified by type, subtype and country of origin with their respective 

abbreviation. 
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Type/Subtype 
Country of 

Origin 
Label / Code 

Packaging type 

/ Net Content 

Alcohol 

Content 

Top Fermentation 

Abbey Ale Belgium L 

Brown glass 

bottle 330 mL 
6.6% 

India Pale Ale Australia IP 

Brown glass 

bottle 330 mL 
6.2% 

Porter Poland Z 
Brown glass 

bottle 330 mL 
9.5% 

Kolsch Australia P 
Brown glass 

bottle 330 mL 
4.6% 

Red Ale USA RT 
Brown glass 

bottle 330 mL 
5.8% 

Steam Ale Australia SA 
Brown glass 

bottle 330 mL 
4.5% 

Aged Ale Scotland IG 
Brown glass 

bottle 330 mL 
6.6% 

Sparkling Ale Australia CS 
Brown glass 

bottle 375 mL 
5.8% 

Bottom Fermentation 

Lager Mexico C 
Clear glass bottle 

355 mL 
4.5% 

Lager Mexico XX 

Green glass 

bottle 330 mL 
4.5% 
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Lager USA BL 
Brown glass 

bottle 355 mL 
5.2% 

Lager Netherlands H 
Green glass 

bottle 330 mL 

5.0% 

Lager Czech Republic BC 

Green glass 

bottle 330 mL 
5.0% 

Lager Low Alcohol Germany BB 

Green glass 

bottle 330 mL 
0.3% 

Pilsner Czech Republic PU 
Green glass 

bottle 330 mL 
4.4% 

Spontaneous Fermentation 

Lambic Cassis Belgium LC 

Green glass 

bottle 375 mL 
3.5% 

Lambic Framboise Belgium LF 
Green glass 

bottle 375 mL 
2.5% 

Lambic Gueuze Belgium LG 
Green glass 

bottle 375 mL 
4.5% 

Lambic Kriek Belgium LK 

Green glass 

bottle 375 mL 
3.5% 

Lambic Kriek Belgium OK 
Green glass 

bottle 375 mL 
6.0% 

Lambic Gueuze Belgium OG 
Green glass 

bottle 375 mL 
6.0% 

Lambic Gueuze Belgium OT 
Green glass 

bottle 375 mL 
6.5% 
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Table 2. Sensory descriptors obtained by agreement of a trained sensory panel, which are directly 

related to foamability properties of beer and their abbreviation. 

Descriptor Abbreviation 

Bitter taste TBitt 

Sweet taste TSweet 

Sour taste TSour 

Aroma Grains AGrains 

Aroma Hops AHops 

Aroma Yeast AYeast 

Viscosity CVisc 

Astringency MAstr 

Carbonation mouthfeel MCarb 

Flavor Hops FHops 

Table 3. Statistical data for the artificial neural networks model showing the correlation (R) and 

determination (R2) coefficients and means squared error (MSE) for the training, validation and 

testing stages, and overall model. 

Stage Samples 
Means squared 

error (MSE) 

Correlation 

coefficient (R) 

Determination 

coefficient (R2) 

Training 46 0.98 0.92 0.85 

Validation 10 1.55 0.87 0.76 

Testing 10 1.00 0.93 0.86 

Overall 66 0.90 0.91 0.83 
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Fig. 1 Feedforward network model diagram with two layers and sigmoid functions using three 

hidden neurons and ten outputs for regression models. A total of 15 inputs from RoboBEER: i) 

MaxVol, ii) TLTF, iii) LTF, iv) FDrain, v) LgBubb, vi) MedBubb, vii) SmBubb, viii) CO2, ix) OH, x) L, 

xi) a, xii) b and xiii) R, xiv) G, and xv) B and ten targets from sensory descriptors (Table 2) were 

used to create the ANN model.  
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Fig. 2 Multivariate data analysis showing: a) PCA from the RoboBEER foam and color parameters: 

i) maximum volume of foam (MaxVol), ii) total lifetime of foam (TLTF), iii) lifetime of foam (LTF), 

iv) foam drainage (FDrain), v) number of large (LgBubb), vi) medium (MedBubb) and vii) small 

bubbles (SmBubb) in the foam, viii) CO2, ix) alcohol content (OH), and color parameters in both 

scales x, xi, xii) CieLab (L, a, b) and xiii, xiv and xv) RGB. The samples abbreviations are listed in 

Table 1 and grouped by type of fermentation (top: circles, bottom: squares and spontaneous: 
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triangles), x-axis represents principal component one (PC1) and y-axis represents principal 

component two (PC2); and b) correlation matrix showing the descriptors in both axes and the 

significant correlation values in the color bar in which black represents positive and light gray 

negative correlations. Dark gray descriptors in both figures represent the RoboBEER parameters, 

while the light gray descriptors represent the sensory attributes studied (Table 2). 
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Fig. 3 Results from artificial neural networks showing (a) the overall model obtained with a high 

correlation (R = 0.91). Both axes represent the 15-point scale used for the ten sensory descriptors 

with the x-axis corresponding to the data from the trained sensory panel (observed) and the y-
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axis the ANN modelled data (estimated). (b) The error histogram that presents a normal 

distribution in which the x – axis represents the errors calculated as observed minus estimated. 


