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Abstract
Objective
To determine the time required for a preclinical Alzheimer disease population to decline in
a meaningful way, use estimates of decline to update previous clinical trial design assumptions,
and identify factors that modify β-amyloid (Aβ)–related decline.

Methods
In 1,120 cognitively unimpaired individuals from 3 international cohorts, we estimated the
relationship between Aβ status and longitudinal changes across multiple cognitive domains and
assessed interactions between Aβ and baseline factors. Power analyses were performed to
explore sample size as a function of treatment effect.

Results
Cognitively unimpaired Aβ+ participants approach mild cognitive impairment (MCI) levels of
performance 6 years after baseline, on average. Achieving 80% power in a simulated 4-year
treatment trial, assuming a 25% treatment effect, required 2,000 participants/group. Multiple
factors interacted with Aβ to predict cognitive decline; however, these findings were all cohort-
specific. Despite design differences across the cohorts, with large sample sizes and sufficient
follow-up time, the Aβ+ groups declined consistently on cognitive composite measures.

Conclusions
A preclinical AD population declines to the cognitive performance of an early MCI population
in 6 years. Slowing this rate of decline by 40%–50% delays clinically relevant impairment by 3
years—a potentially meaningful treatment effect. However, assuming a 40%–50% drug effect
highlights the difficulties in preclinical AD trial design, as a more commonly assumed treatment
effect of 25% results in a required sample size of 2,000/group. Designers of preclinical AD
treatment trials need to prepare for larger and longer trials than are currently being considered.
Interactions with Aβ status were inconsistent and not readily generalizable.
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To effectively alter the course of Alzheimer disease (AD),
interventions may need to occur during the preclinical stage of
the disease, before the onset of clinical symptoms.1 Demon-
strating that treatments are effective during the preclinical
stage will require understanding the magnitude of early
β-amyloid (Aβ)–related cognitive decline in cognitively un-
impaired adults.2 Defining meaningful decline will help de-
termine the time frame for subtle cognitive changes to
progress to incipient functional decline and to identify an
optimal treatment window.

The association between Aβ status and cognition in pre-
clinical AD varies widely.3–9 The design of the A4 study,10 the
first clinical trial in preclinical AD, was based on early esti-
mates of Aβ-related decline using the Alzheimer’s Disease
Neuroimaging Initiative (ADNI)11 and the Australian Imag-
ing, Biomarkers & Lifestyle (AIBL) Study.12 The effect of Aβ
on cognitive decline in AIBL was 4-fold the magnitude of the
effect in ADNI, highlighting an inconsistent picture of early
cognitive decline and uncertain implications for powering
a trial in early AD. Understanding how sampling variation and
study design features influence estimates of cognitive decline
will optimize the design of trials in preclinical AD.

The aims of this study were to harmonize several large studies
in order to (1) determine the time required for a preclinical
AD population to decline in a clinically meaningful way, (2)
characterize how decline differs by cognitive domain, (3)
update previous study design assumptions regarding sample
size, power, and the required treatment effect, and (4) identify
factors that modify Aβ-related decline.

Methods
Standard protocol approvals, registrations,
and patient consents
This study was approved by the institutional review boards of
all of the participating institutions. Informed written consent
was obtained from all participants at each site.

Participants
Participants from each of the cohorts ADNI, AIBL, and the
Swedish Biomarkers for Identifying Neurodegenerative Dis-
orders Early and Reliably (BioFINDER) study13 were in-
cluded if they were classified as cognitively normal at baseline,
were tested for Aβ biomarkers (using either CSF or PET), and

were followed longitudinally with neuropsychological
examinations.11–13 Participants were excluded from any of the
3 studies if they had a major neurologic or psychiatric illness
or a history of substance abuse. In addition, ADNI partic-
ipants were excluded if the screeningMRI showed evidence of
infection, infarction, or other focal lesions, including multiple
lacunes or lacunes in a critical memory structure. MRI results
were not part of the exclusionary criteria for AIBL or Bio-
FINDER, but BioFINDER participants were excluded if they
refused MRI or lumbar puncture. Detailed exclusionary cri-
teria for ADNI can be found at adni.loni.usc.edu/wp-content/
uploads/2008/07/adni2-procedures-manual.pdf and for
BioFINDER at biofinder.se/biofinder_cohorts/cognitively-
healthy-elderly/. We also included 305 participants enrolled
into the early mild cognitive impairment (MCI) cohort in
ADNI (defined by a subjective memory complaint and
a delayed logical memory score of 9–11 for those with 16 or
more years of education, 5–9 for 8–15 years of education, or
3–6 for 0–7 years of education, where possible scores range
from 0 to 25)14 for a comparative analysis. The extensions of
ADNI introduced the distinction of MCI into early and late
MCI in the attempt to define an earlier point in time for
disease detection. Late MCI refers to the original definition of
MCI (performance for 1.5 SD below the normative mean),
whereas in early MCI, impairment is defined as performance
between 1.0 SD and 1.5 SD below the normative mean on
a standard test. Because of recent evidence of an artificially
low reversion rate from MCI to control in ADNI,15 we ex-
cluded 7 early MCI participants who consistently had a global
Clinical Dementia Rating (CDR) score of zero after screening
in a sensitivity analysis.

Data on memory complaints in the controls were available in
AIBL and ADNI. In AIBL, participants with a memory
complaint were identified by the response to the question,
“Do you have difficulties with your memory?” In ADNI, the
participant was required to have a significant memory concern
as reported by the participant, study partner, or clinician and
a score >16 on the first 12 items of the Cognitive Change
Index.

Aβ biomarkers
Aβ status was defined by PET imaging if available (all AIBL
and a majority of ADNI participants), and otherwise by CSF
biomarkers (all BioFINDER and a small proportion of ADNI
participants). PET imaging was done using 18F-florbetapir
PET in ADNI and using 18F-florbetapir, 11C–Pittsburgh

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian Imaging,
Biomarkers & Lifestyle; AIC = Akaike information criterion; BioFINDER = Biomarkers for Identifying Neurodegenerative
Disorders Early and Reliably; CDR = Clinical Dementia Rating; CDR-SB = CDR sum of boxes; dADASc = Delayed Word
Recall from the Alzheimer’s Disease Assessment Scale–Cognitive Subscale; dMemory = Logical Memory Delayed Recall;
MCI =mild cognitive impairment;MMSE =Mini-Mental State Examination;OR = odds ratio; PACC = Preclinical Alzheimer’s
Cognitive Composite; PiB = Pittsburgh compound B; SUVR = standardized uptake value ratio;Trails B = Trail-Making Test B.
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compound B (PiB), or 18F-flutemetamol PET in AIBL.
Methods to acquire and process imaging data were described
previously.16–18 CSF samples were collected at baseline by
lumbar puncture. CSF methods have been described
previously.19–21 In short, ADNI CSF samples were analyzed
for CSF Aβ42 using the AlzBio3 assay (Fujirebio, Ghent,
Belgium) on the xMAP Luminex platform. BioFINDER CSF
samples were analyzed for CSF Aβ42 and Aβ40 using ELISA
assays (ADx/EUROIMMUN AG, Lübeck, Germany). For
ADNI participants, Aβ+ was defined as 18F-florbetapir PET
standardized uptakevalueratio (SUVR) >1.1 (n = 381)22 or
CSF Aβ42 <192 ng/L (n = 62).19 For AIBL, Aβ+ was defined
as 18F-florbetapir PET SUVR >1.1 (n = 72), 11C-PiB PET
SUVR >1.5 (n = 201), or 18F-flutemetamol SUVR >0.62 (n =
75).23 In BioFINDER, Aβ+ was defined as CSF Aβ42/Aβ40
<0.1.24

Cognitive testing
Participants were followed for up to 6 years for neuro-
psychological testing. In ADNI, tests were administered
annually with an additional test at month 6 for most
measures. In AIBL, tests were administered every 18
months. In BioFINDER, tests were administered every 2
years. The Preclinical Alzheimer’s Cognitive Composite
(PACC)25 and its individual components were the primary
outcomes compared in the 3 cohorts. This composite was
developed specifically to be sensitive to early cognitive
changes in AD and is being incorporated in clinical trials of
disease-modifying treatments.10 Substitutions representing
the same cognitive domain were made in the case where the
original PACC components were not available or had
limited follow-up in a cohort’s neuropsychological battery,
following previous procedures.10,25 Visits where all com-
ponents or substitutions were available were included. For
ADNI, the modified PACC comprised the Mini-Mental
State Examination (MMSE), Logical Memory Delayed
Recall (dMemory), Trail-Making Test B (Trails B), and the
Delayed Word Recall from the Alzheimer’s Disease As-
sessment Scale–Cognitive Subscale (dADASc). For AIBL,
the PACC was constructed using the MMSE, dMemory,
Digit Symbol Substitution Test, and the Delayed Recall
from the California Verbal Learning Test (dCVLT). For
BioFINDER, the PACC consisted of the MMSE, dADASc,
and Trails B. To calculate the composite, z scores of the
individual components were taken over all time points and
then summed. This sum was then standardized to the mean
and SD of the baseline score of the sum.

The PACC includes 2 measures of delayed memory recall;
however, because only one delayed memory measure was
available in BioFINDER, dADASc was given twice the
weight in BioFINDER to reflect the contribution of delayed
memory recall in the composite. Immediate recall (logical
memory for ADNI and AIBL, Alzheimer’s Disease As-
sessment Scale–Cognitive Subscale word recall for Bio-
FINDER) was evaluated as a measure of baseline memory
ability to predict changes in the PACC. The CDR sum of

boxes (CDR-SB) was also evaluated as an outcome
measure.

Statistical analysis
Longitudinal measures were modeled using generalized least
squares regression assuming a compound symmetric co-
variance structure.26 To capture departures from linearity in
the trajectory of the neuropsychological measures, continuous
time from baseline test was parameterized using restricted
cubic splines.27 Cubic splines are functions of polynomials
allowing flexibility in the estimation of trajectories over time.
Time was modeled with 3 spline knots, 2 at the boundaries
and 1 at median follow-up. Differences in trajectories between
Aβ+ and Aβ− groups were tested using interactions between
the 2 measures for time and the group factor using likelihood
ratio tests and change in the Akaike information criterion
(AIC), a model selection tool.28 A lower value of AIC indi-
cates a better fitting model. Baseline age was also modeled
using restricted cubic splines to capture its nonlinear effect on
cognition. Models included the 2 spline-estimated measures
for baseline age; sex; years of education, where education was
categorized as 0–12 years, 13–15 years, and 16 or more years;
the interaction between Aβ status and the 2 measures for
time; and the main effects for Aβ status and time.

We also evaluated interactions between Aβ status and de-
mographics (baseline age, sex, education), APOE (presence of
at least one e4 allele), memory complaint, and baseline
memory, and their effect on changes in the PACC. These
models included all the terms described above as well as the
3-way interaction between time, Aβ status, and the de-
mographic term. The interaction with age was evaluated using
the 2 spline-estimated measures.

To estimate power for hypothetical clinical trials, mixed
models of repeated measures29 were used to estimate the
variance components of the change from baseline in the
PACC for the Aβ+ subjects in each cohort. To mirror current
preclinical trial design,10 Aβ+ subjects with very high cognitive
scores (dMemory >15 for ADNI [n = 32] and AIBL [n = 12]
and dADASc >8 in BioFINDER [n = 29]) were excluded in
order to remove “supernormals.” This was done to mitigate
the inclusion of participants with little or no sign of near-term
decline in order to increase the likelihood of decline in the
placebo group and improve power. Model estimates were
then used to calculate the power for 4- and 6-year clinical
trials, assuming a range of sample sizes and drug effects,
a 6-month visit interval, and a 30% dropout rate. Individual
cohort estimates of change from baseline and variance were
then meta-analyzed to get combined estimates of change over
time.30

In order to provide a context for meaningful clinical decline in
the cognitively normal participants, we compared the baseline
PACC scores in the normal participants to the PACC scores
in the ADNI early MCI participants (stratified by Aβ status).
We then evaluated the mean time for the average preclinical
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AD participant to reach the mean baseline PACC score in the
early MCI groups.

Baseline associations between demographics and Aβ positiv-
ity were assessed using the Wilcoxon rank-sum test for con-
tinuous variables and a χ2 test for categorical variables.
Reductions of AIC >2 and p values <0.05 were considered
significant. All analyses were done in R v3.4.3 (r-project.org).
GLS models were fit using the gls function from the nlme
package.

Data availability
Data from the ADNI and AIBL cohorts are publicly available.
Data from BioFINDER may be requested.

Results
Cohort characteristics
A total of 443 cognitively healthy controls from ADNI, 348
from AIBL, and 329 from BioFINDER were included in the
study. Aβ+ groups were older, had a higher frequency of
APOE e4 positivity, and performed significantly worse on
several cognitive tests at baseline, compared to Aβ− groups, in
all cohorts (table 1). The proportion of APOE e4 positivity in
the Aβ+ group was similar in BioFINDER (55%) and AIBL
(53%) and lower in ADNI (44%). Education and sex were not
associated with Aβ positivity in AIBL or BioFINDER; how-
ever, Aβ+ ADNI participants were more likely to be female
and have less education compared to Aβ− ADNI participants.
The majority of ADNI participants had 16 or more years of
education, whereas the majority of both AIBL and Bio-
FINDER participants had fewer than 16 years of education.
There was no association between subjective memory com-
plaint and Aβ status in either ADNI or AIBL (subjective
memory complaint data were not available in BioFINDER).

There was considerable variability in attrition rates across the
3 cohorts. At 4 years of follow-up, ADNI retained 46% of its
participants; however, dropout was not associated with age,
sex, education, Aβ status, or baseline memory performance (p
> 0.13). At 4 years, BioFINDER retained 69% of its partic-
ipants. Womenwere less likely to drop out (odds ratio [OR] =
0.78, p = 0.01), participants with more education were more
likely to drop out (OR = 1.35, p = 0.04), and older age was
associated with increased drop out (OR = 1.28 for 1 SD
increase in age, p < 0.001). AIBL retained 90% of its partic-
ipants, but older age was associated with increased drop out
(OR = 1.26 for 1 SD increase in age, p = 0.01).

Cognitive changes
Aβ+ participants declined significantly more on the PACC
and all individual components of the PACC compared to Aβ−
participants, in all 3 cohorts, with the exception of Trails B in
BioFINDER (p = 0.08). Estimates and longitudinal plots of
cognition are shown in figure 1. Estimates of the change from
baseline, confidence intervals, and the residual SD for each
visit and group are shown in table 2.

At year 4, the Aβ+ groups declined by −0.45 points on the
PACC (ADNI), −0.48 points (BioFINDER), and −0.53
points (at 4½ years, AIBL) (table 2). At year 4, the Aβ− group
improved 0.09 points on the PACC in ADNI and declined by
−0.14 points in BioFINDER and −0.02 points in AIBL.

Clinical significance
To evaluate decline and to characterize what might be con-
sidered a clinically significant change, we compared the scores
of the cognitively normal participants to the baseline scores of
the early MCI participants in ADNI. The mean PACC score
in Aβ− and Aβ+ early MCI participants at baseline was −1.01
and −1.30, respectively (figure 2). Six years after baseline, the
estimated PACC score combined across cohorts of the pre-
clinical AD groups was midway between the Aβ− and Aβ+
early MCI performance. Similarly, the early MCI Aβ− and
Aβ+ scores at baseline on the CDRSB were 1.22 and 1.38,
respectively, whereas the preclinical AD groups averaged
about 1.0 at 6 years.

On each of the MMSE, delayed list learning, and executive
function, the cognitively normal Aβ+ groups averaged worse
scores than both MCI groups by 6 years after baseline. The
cognitively normal Aβ+ groups did not approach the MCI
groups’ delayed logical memory scores by 6 years after base-
line. Note that delayed logical memory was not available in
BioFINDER.

In a sensitivity analysis, 7 early MCI participants who con-
sistently had a global CDR of zero after screening were ex-
cluded. The reduced sample scores were slightly worse than
the full MCI sample with Aβ− and Aβ+ PACC scores of −1.02
and −1.33, respectively, and CDR-SB scores of 1.23 and 1.39.

Power
Using estimates of change and variance, we calculated the
power for hypothetical 4- and 6-year clinical trials for each
cohort, assuming a 30% dropout rate, and various sample sizes
and drug effects (figure 3). In 4-year trials, assuming a 25%
drug effect, i.e., a 25% slowing of cognitive decline in the
treatment group, the required sample size to reach 80% power
was 2,000 per group for the estimate combining all cohorts.
Assuming a larger effect size of 35%, the required sample size
to reach 80% power was 1,000 per group on average.

In 6-year trials, assuming a 25% drug effect, the required
sample size to reach 80% power was about 600 per group for
the estimate combining all cohorts. Assuming a 35% effect
size, the required sample size to reach 80% power was 300 per
group on average.

Aβ interactions
The interactions between Aβ status and baseline factors to
predict cognitive decline on the PACCwere also assessed. Plots
of the amyloid groups at different levels of the significant
interacting factors, p values, and the change in AIC are shown in
figure 4. In AIBL, there were significant interactions between
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Aβ and education, APOE e4 positivity, and baseline memory.
The only significant interaction in ADNI was between Aβ and
sex, and the only significant interaction in BioFINDER was
between Aβ and age. There were no significant interactions
between Aβ and subjective memory complaint (ADNI: p =
0.56, AIBL: p = 0.87, not available for BioFINDER).

Discussion
Themain findings of this study are (1) cognitively unimpaired
Aβ+ participants approach early MCI cognitive performance
levels on general cognition and global outcomes, delayed list
recall, and executive function by 6 years after baseline; (2) to
achieve 80% power in a simulated treatment trial assuming
a 25% treatment effect, 2,000 participants/group for a 4-year
trial and 600 participants/group for a 6-year trial are required;
(3) several baseline factors interacted with Aβ status to pre-
dict decline on the PACC including APOE e4 positivity,
memory, and education in AIBL; age in BioFINDER; and sex
in ADNI, although these findings were all cohort-specific; (4)
despite considerable design differences across the cohorts,
with large sample sizes and sufficient follow-up time, the
cognitively unimpaired Aβ+ groups declined consistently on
cognitive composites; (5) Aβ+ groups declined significantly
faster on all cognitive tests in all cohorts, with the exception of
Trails B in BioFINDER, where the Aβ+ group declined
marginally faster (p = 0.08), compared to the Aβ− group.

A key question for preclinical AD trials is how to define
meaningful outcomes that will support use of therapeutic
interventions in people who may remain asymptomatic for
many years even without treatment. Traditional AD dementia
trials are frequently powered to detect a several-point differ-
ence on a global cognitive score (e.g., Alzheimer’s Disease
Assessment Scale–Cognitive Subscale), as well as a global/
functional co-primary outcome to establish clinical mean-
ingfulness.31 Post hoc analyses of the first large trials of sol-
anezumab in patients with mild AD showed a 34% reduction
of cognitive decline and a 17% reduction of functional

Table 1 Baseline characteristics

Characteristic Aβ+ Aβ2 p Value

ADNI N = 165 N = 278

Years of follow-up 4.1 (2.8) 4.3 (2.9) 0.28

Age 75.1 (5.5) 73.3 (5.9) 0.001

Female, n (%) 99 (60) 132 (47.5) 0.01

Education, y 0.002

0–12 18 (10.9) 25 (9.0)

13–15 46 (27.9) 42 (15.1)

16+ 101 (61.2) 211 (75.9)

Memory complaint, n (%) 42 (25.5) 64 (23) 0.64

APOE «4+, n (%) 73 (44.2) 53 (19.1) <0.001

MMSE 29.1 (1.1) 29.0 (1.2) 0.68

dMemory 12.8 (3.4) 13.4 (3.2) 0.05

dADASc 7.0 (1.8) 7.2 (1.8) 0.33

Trails B 93.8 (44.4) 79.7 (39.4) <0.001

BioFINDER N = 85 N = 244

Years of follow-up 3.6 (1.8) 3.6 (1.7) 0.55

Age 74.7 (5.0) 73.3 (5.0) 0.02

Female, n (%) 56 (65.9) 142 (58.2) 0.26

Education, y 0.99

0–12 51 (60.0) 146 (59.8)

13–15 20 (23.5) 58 (23.8)

16+ 14 (16.5) 40 (16.4)

Memory complaint, n (%) — — —

APOE «4+, n (%) 46 (54.8) 46 (19) <0.001

MMSE 29.0 (0.9) 29.1 (1.0) 0.24

dMemory — — —

dADASc 7.4 (2.2) 8.2 (1.8) 0.001

Trails B 111.8 (48.7) 102.4 (50.8) 0.04

AIBL N = 100 N = 248

Years of follow-up 4.9 (1.9) 5.9 (2.9) <0.001

Age 73.5 (7.3) 69.1 (6.0) <0.001

Female, n (%) 49 (49) 136 (54.8) 0.39

Education, y 0.77

0–12 40 (40.4) 104 (41.9)

13–15 23 (23.2) 42 (16.9)

16+ 36 (36.4) 102 (41.1)

Memory complaint, n (%) 58 (58.6) 132 (53.4) 0.45

APOE «4+, n (%) 53 (53) 58 (23.4) <0.001

Table 1 Baseline characteristics (continued)

Characteristic Aβ+ Aβ2 p Value

MMSE 28.7 (1.2) 29.0 (1.2) 0.04

dMemory 11.1 (4.11) 12.1 (4.0) 0.04

dCVLT 11.5 (3.4) 12.2 (2.9) 0.10

Digit symbol 57.9 (12.9) 61.3 (13.7) 0.05

Abbreviations: Aβ = β-amyloid; ADNI = Alzheimer’s Disease Neuroimaging
Initiative; AIBL = Australian Imaging, Biomarkers & Lifestyle; BioFINDER =
Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably;
dADASc = Delayed Word Recall from the Alzheimer’s Disease Assessment
Scale–Cognitive Subscale; dCVLT = Delayed Recall from the California Verbal
Learning Test; dMemory = Logical Memory Delayed Recall; MMSE = Mini-
Mental State Examination; Trails B = Trail-Making Test B.
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decline.32 However, these effects were not replicated in a sub-
sequent randomized trial, which failed to show a significant
treatment effect, with only an 11% reduction of cognitive de-
cline and 15% reduction of functional decline.33 In preclinical
AD, the cognitive decline observed over 3–4 years is subtle, and
is typically accompanied by little or no functional decline.34

However, it has not been clarifiedwhat degree of decline would
warrant classification as meaningful decline. To benchmark the
magnitude of cognitive decline to a measure of clinical mean-
ingfulness, we compared the scores of the cognitively un-
impaired participants to those classified as early MCI—a group
with incipient functional decline. The separation between these
groups was just over 1 SD on the PACC, suggesting that 1 point

of additional decline in Aβ+ participants compared to Aβ−
participants could be taken as an approximate benchmark for
clinically meaningful decline. Combining results across cohorts
shows the average Aβ+ participant to have the same PACC
score at 6 years post baseline as the average patient with early
MCI had at baseline (figure 2). Aβ+ participants also reached
MCI level performance at 6 years on the other cognitive out-
comes, with the exception of delayed logical memory. Possible
explanations for this exception include that this measure was
used as inclusion criterion for enrollment. This measure was
also not available in BioFINDER, the cohort demonstrating the
poorest scores on all measures by the end of follow-up. Finally,
delayed logical memory demonstrated a clear practice effect in

Figure 1 Cognitive change over time

Cognitive responses are plotted over time for eachβ-amyloid (Aβ) group, in each cohort separately: (A) Alzheimer’s DiseaseNeuroimaging Initiative (ADNI), (B)
Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably (BioFINDER), and (C) Australian Imaging, Biomarkers & Lifestyle (AIBL). Individual
Preclinical Alzheimer’s Cognitive Composite (PACC) components are shown as well as the PACC in the bottom row. Akaike information criterion and p values
are shown in each plot, testing for differences between Aβ groups over time. dMemory = Logical Memory Delayed Recall; MMSE = Mini-Mental State
Examination; Trails B = Trail-Making Test B.
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the Aβ− group (figure 2), with the cognitively unimpaired
participants taking this test 6 times over follow-up, compared to
one time for the MCI participants.

Based on the PACC estimates, a treatment effect of 40%–50%
would be required to delay the cognitive decline of a group of
Aβ+ participants from reaching the 1 SD milestone by 3 years.
Delaying the cognitive decline equivalent to the level of the
average early MCI patient by 3 years may be a clinically
meaningful treatment effect. But 40%–50% is a large treatment
effect and highlights the difficulties in preclinical AD trial de-
sign. However, the observation that clinically meaningful de-
cline is reached within 6 years offers strong support for the use
of a cognitive composite in trials that are shorter than 6 years,
since short term cognitive decline can be conceptualized as
a proxy for downstream functional changes. With meaningful
continuous cognitive changes occurring prior to an MCI di-
agnosis, these results, as well as recent reports,35 argue against
the use of a time-to-MCI endpoint in preclinical AD trials.

The estimated sample size or trial length requirements are so-
bering. Previously reported sample size and drug effect
requirements of 500/group with a 30%–50% effect size in a 3-
year trial were optimistic and based on approximately 20% of the
data available in this study.10 In order to reliably achieve 80%
power for a modest, real-world effect size of 20%–30%, investors
in AD research for therapeutics developmentwill have to prepare
to support larger and longer trials than are currently envisaged.

There were several significant interactions between Aβ status
and baseline factors. However, no interaction was observed in

more than one cohort. In AIBL, the combination of Aβ status
and low education, APOE e4 positivity, or low baseline
memory all led to increased rates of decline on the PACC.
Decline in the Aβ+ groups did not depend on APOE e4 status
in ADNI or BioFINDER; however, in AIBL, little decline was
observed in Aβ+ participants who were not also APOE e4+
(figure 4), as was reported previously.36,37 Evidence for ad-
ditional risk of cognitive decline for individuals who are both
Aβ+ and APOE e4+ had been incorporated into the design of
a phase 2b/3 trial in preclinical AD (clinicaltrials.gov/ct2/
show/NCT02569398); however, this pattern was observed in
only one of the 3 cohorts studied here. The additional decline
observed in the Aβ+ participants who also had low baseline
memory in AIBL is consistent with previous reports.38 Still,
despite wide separation at baseline, high and low baseline
memory (and also high and low education) groups declined in
parallel over time in both ADNI and BioFINDER. The lack of
replicability of these interactions across cohorts suggests that
if there are true underlying effects of these baseline factors that
modify the Aβ/cognition relationship, they are mild, or they
depend on other/complex interactions. Another possibility is
that their identification was the consequence of type I error,
although the strength of the associations in AIBL (but not
ADNI, reported previously39 or BioFINDER) would survive
a Bonferroni correction. Our findings caution against relying
on interactions between Aβ and demographic/clinical factors
when selecting participants for preclinical AD trials.

There were considerable design differences among the 3 study
cohorts including differences in geographic region, cognitive
measures, visit frequency, and sampling characteristics.

Table 2 PACC: Change from baseline, 95% CI, and residual SD estimates

Study Month

Aβ+ Aβ2
Difference
(Ddiff) 95% CI

Residual
SD (σ) Ddiff/σN Estimate N Estimate

ADNI 12 128 0.01 223 0.08 −0.08 −0.16 to 0.01 0.89 −0.09

24 146 −0.05 236 0.14 −0.18 −0.32 to −0.04 0.89 −0.21

36 62 −0.20 109 0.14 −0.34 −0.50 to −0.18 0.91 −0.37

48 70 −0.45 132 0.09 −0.54 −0.72 to −0.37 1.03 −0.53

60 31 −0.76 58 0.02 −0.78 −1.00 to −0.56 1.15 −0.68

72 32 −1.12 63 −0.08 −1.03 −1.35 to −0.72 1.32 −0.78

BioFINDER 24 75 −0.02 221 −0.04 0.02 −0.16 to 0.20 0.70 0.03

48 55 −0.48 149 −0.14 −0.34 −0.56 to −0.12 0.83 −0.41

72 15 −1.25 46 −0.26 −0.99 −1.40 to −0.57 1.29 −0.77

AIBL 18 95 −0.20 241 −0.03 −0.17 −0.29 to −0.05 0.78 −0.22

36 81 −0.38 238 −0.04 −0.34 −0.52 to −0.17 0.83 −0.41

54 74 −0.53 233 −0.02 −0.51 −0.69 to −0.34 1.04 −0.49

72 60 −0.66 216 0.02 −0.68 −0.88 to −0.48 0.98 −0.70

Abbreviations: Aβ = β-amyloid; ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian Imaging, Biomarkers & Lifestyle; BioFINDER = Bio-
markers for Identifying Neurodegenerative Disorders Early and Reliably; CI = confidence interval; PACC = Preclinical Alzheimer’s Cognitive Composite.
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Despite these differences, the estimates of decline observed
on the PACC in the Aβ+ groups at 4 years were remarkably
similar: −0.45 points in ADNI, −0.48 in BioFINDER, and
−0.53 (at 4½ years) in AIBL (table 2). Where the cohorts
differed was in the change in the Aβ− group: 0.09 in ADNI,
−0.14 in BioFINDER, and −0.02 in AIBL. The lower power
estimate for BioFINDER for a clinical trial can be traced back
to the additional decline observed in the Aβ− group, which
may be due in part to including participants with presence of
cerebrovascular pathology such as white matter lesions (not
excluded from BioFINDER, but may have been excluded
from ADNI).40,41 Cognitive reserve may also play a role, given
the lower levels of education in BioFINDER compared to
both ADNI and AIBL.

The Aβ group trajectories on the PACC were similar, though
there was variation in the shape of the trajectories for some of
the individual components. One design feature that may in-
fluence trajectory differences is test frequency. ADNI partic-
ipants were tested every 6 months over the first year and every

year thereafter, whereas AIBL participants were tested every
18 months and BioFINDER, every 24 months. The increased
test frequency and higher levels of education in ADNI may
have contributed to a tendency to improve over time as seen
in dMemory (figure 1). Despite this variation in dMemory
slope, Aβ group separation over time was preserved in ADNI
and AIBL. For delayed list learning, all Aβ− groups remained
stable, and all Aβ+ groups showed similar decline over the
total follow-up time. Combining individual components into
the composite seemed to mitigate individual domain trajec-
tory differences (figure 2). Overall, the Aβ groups across all 3
cohorts started to diverge reliably around 3 years after
baseline.

One of the main limitations of this study is the variation of
available measures used to construct the composite cognitive
scores (i.e., the PACC) in each of the cohorts. While we
included the domains represented in the original PACC, it
remains unclear how these substitutions may affect the esti-
mates of Aβ-related cognitive decline. Another limitation is

Figure 2 Meta-estimates of change

Meta-estimates of change over time are shown by β-amyloid (Aβ) group. Individual cohort estimates are also shown. Themean baseline early mild cognitive
impairment scores are shown in dashed purple for Aβ+ and dashed orange for Aβ−. ADNI = Alzheimer’s Disease Neuroimaging Initiative; AIBL = Australian
Imaging, Biomarkers & Lifestyle; BioFINDER = Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably; CDRSB = CDR sumof boxes; EMCI =
early mild cognitive impairment; MMSE = Mini-Mental State Examination; PACC = Preclinical Alzheimer’s Cognitive Composite.
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that with strict exclusionary criteria, the participants in these
studies have few comorbidities, lack diversity, and do not
mirror the general population. Clinical trials frequently use
similar exclusionary criteria and may also lack generalizability.
An additional limitation to all studies trying to inform disease-
modifying AD trials is that without any information regarding
potential effects of treatments, the power to detect a hypo-
thetical effect is speculative.

Average cognitively normal Aβ+ participants approach early
MCI cognitive performance levels 6 years after baseline.
Comparing these 3 cohorts side by side demonstrates that
large sample sizes and sufficiently long follow-up times result
in consistent estimates of decline in preclinical AD. Despite
substantial design and sampling differences, these results
support the potential for internationally conducted clinical
trials in preclinical AD. However, it is likely that designers of
preclinical AD treatment trials will have to prepare for larger
and longer trials than are currently considered.
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