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The relationship between nonnative patterns of social interaction and children's
mathematical thinking was investigated in 5 classes (4 reform and 1 conventional) of
7- to 8-year-olds. In earlier studies, lessons from these classes had been analyzed for
the nature of interaction broadly defined; the results indicated the existence of 4 types
of classroom cultures (conventional textbook, conventional problem solving, strategy
reporting, and inquiry/argument). In the current study, 42 lessons from this data
resource were analyzed for children's mathematical thinking as verbalized in class
discussions and for interaction patterns. These analyses were then combined to
explore the relationship between interaction types and expressed mathematical
thinking. The results suggest that increased complexity in children's expressed math­
ematical thinking was closely related to the types of interaction patterns that differ­
entiated class discussions among the 4 classroom cultures.
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Over the past 15 years, research has provided substantial evidence that the social
processe~for doing mathematics differ in conventional classrooms and in classes
oriented to ideas advocated in U.S. reform documents (e.g., NCTM, 1989,2000).
Such research has focused on social norms, sociomathematical norms, forms of
interaction, and discourse that occur in classes as a means for examining the influ­
ence of mathematics classroom practice on, for example, the nature of students'
explanations and justifications (Cobb, Wood, Yackel, & McNeal, 1992) and argu­
mentation (Krummheuer, 1995). An underlying assumption ofthis research and of
the goals ofrefonn more generally is the importance of mathematical thinking and
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reasoning in the development of conceptual understanding and the central role that
abstraction and generalization play in the domain of mathematics. Moreover, it is
widely believed that when· students learn mathematics through thinking and
reasoning, they understand conceptually. Further, theoretically, it is commonly
assumed that there is a link among social interaction, the development of human
thought, and the construction of knowledge (e.g., Bruner, 1996; Hobson, 2004;
Tomasello, 2001).

One strand of research on the differences among mathematics classes focuses on
the social nature of children's learning; this research assumes that knowledge is
socially constructed. This research on mathematics classroom practices therefore
focuses on either the classroom culture in relation to children's opportunities for
learning (e.g., Cobb & Bauersfeld, 1995), the processes involved in acculturating
children into the practices of the classroom culture (e.g., Bowers, Cobb, & McClain,
1999), or the role that discipline- specific social norms (Le., sociomathematical
nonns) play in learning mathematics in the classroom (Yackel & Cobb, 1996). This
research draws on an interactionist perspective, following Blumer (1969), of the
important role of social interaction in meaning making. The research is also derived
from sociologists such as Goffman (1959), who claimed that the social structures
in everyday life consist of normative patterns of interaction and discourse, and
Vygotsky (1978), who focused on children's participation in collective practices
as the source of mathematical knowledge.

Another strand ofresearch investigates differences among mathematics classroom
practices in relation to students' knowledge of mathematics. This research recog­
nizes that, in reforming classroom mathematics practice, one must consider the inter­
relationship between children's developing cognition and the structure of mathe­
matics. For that reason, the investigations focus on such topics as the development
of individual children's invented mental strategies (e.g., Carpenter, Franke, Jacobs,
& Fennema, 1998) or the acquisition of specific content knowledge (e.g., Saxe,
Gearhart, & Seltzer, 1999). Thus, studies such as these show that the social struc­
ture and children's conceptual understanding diff~r between conventional and
reform-oriented classes. Additionally, several larger-scale studies support these find­
ings (e.g., Askew, Brown, Rhodes, Johnson, & Wiliam, 1997).

In contrast to research on social and psychological conditions, others such as Ball
and Bass (2000) contend that there is another set ofpractices that is fundamentally
important and should be considered when investigating classrooms; these are the
mathematical practices. Ball and Bass define mathematical practices as the ways
in which inquiry and validation of mathematical knowledge occur in the classroom;
mathematical practices represent the practice of mathematics in the same way that
the scientific method is considered a scientific practice. In looking at how children
construct mathematical knowledge, they argue that mathematical practices are
encapsulated in mathematics and are not derived from or viewed as classroom math­
ematics practices. Added to this assertion of Ball and Bass is the widely held belief
that it is the particular characteristics of domain-specific thinking (e.g., deductive
reasoning) in mathematics, essential to abstraction and generalization in the



224 Mathematical Thinking

construction of mathematical knowledge, that differentiate mathematical practices
from other classroom practices (Reid, 2002; Russell, 1999).

These lines of research provide fundamental information relating mathematics
classroom processes and mathematics practices to student learning, but a clear under­
standing of the connection between social interaction and children's development
of mathematical thinking is still not well understood. In this article, we begin to
address this relationship by examining the nature of students' verbalized mathe­
matical thinking within classroom cultures characterized by differing patterns of
social interaction. This research provides initial insight into the relationship between
different types of interaction patterns and children's mathematical thinking and
reasoning and thus contributes to our understanding ofhow mathematical thinking
may develop within classrooms.

BACKGROUND TO STUDY

Wood (1994, 1996, 1998b) and Wood and Tumer-Vorbeck (1999,2001) empir­
ically established that differences exist among refonn-oriented classes in tenns of
the social features and quality of students' thinking. The analysis of interaction and
discourse in several refonn-oriented classes yielded broadly defmed patterns ofinter­
active and communicative exchanges. These broad patterns of interaction served as
the basis from which the similarities and, more important, differences in the math­
ematics classroom culture across reform-oriented classrooms were identified.
Analysis of the data revealed that refonn-oriented classes fell into two major types,
strategy reporting and inquiry/argument classrooms. These types were assumed to
represent the ways in which the culture of the classrooms differed. The main focus
in a strategy reporting classroom culture is on children's presentation of different
strategies for the problems solved. Children presenting their solutions may be asked
to provide more infonnation about how they solved the problem by the teacher but
rarely by other student listeners. Classes classified as inquiry/argument are those in
which children offer different solution methods, as in the strategy reporting classes,
but also why; they provide reasons for their thinking in order to make sense to others.
In addition, student listeners and teachers in these classes ask questions for further
clarification and understanding. These discussions also often include a challenge or
disagreement from student listeners or teachers, which initiates an exchange that in
tum prompts the thinking of justification in support of children's ideas.

Kazemi and Stipek (2001) reported similar fmdings of differences among reform­
oriented mathematics classes. Their study focused on the social nonns, sociomathe­
matical norms, and teaching practices that existed in classes. They concluded that,
although social norms were the same across different classes, the sociomathematical
norms and teaching practices that promoted conceptual understanding were different.
They described differences in student explanations and teacher questioning similar to
those that Wood (1994, 1996, 1998b) and Wood and Tumer-Vorbeck (1999,2001)
found in their earlier studies of strategy reporting and inquiry/argument classes but
attributed the distinction among classes to differences in sociomathematical nonns.
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Having previously established that differences exist between conventional and
reform-oriented classes (Wood, 1998a) as well as among reform-oriented classes,
primarily based on social normative characteristics of the classroom practices (e.g.,
Wood & Turner-Vorbeck, 1999,2001), this research study looked specifically at
the nature of children's mathematical thinking and reasoning as it occurs within these
social situations. Although it is generally accepted that differences in classroom
interaction influence stUdents' mathematical thinking, there is little research that
examines the relationship between specific interaction patterns and student thinking
and few studies that examine students' discipline-specific thinking within different
interactive situations. The research we report in this article analyzed the specific
types ofinteraction patterns that underlie the broad classification categories of class­
room cultures (conventional, conventional problem solving, strategy reporting, and
inquiry/argument) coupled with an analysis of children's mathematical thinking
within these interaction patterns. The intention was to explore the generally accepted
intuition that children in reform-oriented classes develop essential modes of math­
ematical thought and early forms ofmathematical reasoning. We did this by inves­
tigating the interrelationship between types of interaction patterns and the nature
of children's mathematical thinking as verbalized during class discussion--the
reporting phase of reform instruction. To clarify, we analyzed children's mathe­
matical thinking as verbalized within a group or public thought, as opposed to
thinking alone or private thought. l

CONCEPTUAL FRAMEWORKS

ill this study, we used two conceptual frameworks in order to describe and inter­
pret the relationship between children's verbalized thinking and specific interac­
tion patterns. One conceptual framework was used to investigate specific interac­
tion patterns and the other conceptual framework was employed to examine the
quality of students' expressed thinking.

Classroom Culture

Wood and Tumer-Vorbeck (1999, 2001) generalized the differences they found
in classroom cultures on two dimensions: student participation and student thinking.
On the one hand, the participation dimension consisted of the extent to which
teachers, in establishing the social norms for interaction with students, made it
possible for all pupils to participate actively in the interaction and discourse.
Student participation differed between the two reform-oriented classroom cultures
in terms of the teacher's expectations for students, both in giving their explanations
and in asking questions. From these empirical findings, a theoretical connection was
made between the social norms constituted in a class and the social interaction
patterns that evolve. On the other hand, the student thinking dimension was related

1 The italicized terms are taken from Rochat (2001).
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to an increasing quality of student thinking that included reasoning and justifica­
tion of mathematical ideas. Theoretically, these levels of thinking were hypothe­
sized to differentiate among classroom cultures in terms of a deepening in thought
processes and as a means to particular kinds of knowledge outcomes.

Together the two dimensions provide a conceptual framework for describing the
differences among classroom cultures in terms of the relationship between social
interaction (participation) and student thinking (cognition). Student participation
is believed to become more frequent and sophisticated in relation to the increased
complexity of interaction within the classroom cultures. This research draws from
Bruner's (1996) long-standing belief in the need for children to participate in social
interaction in order to acquire the shared meanings of their culture and to develop
in their capacity for thinking. The interaction dimension also draws on the inter­
ests of theorists Goffman (1959) and Garfinkel (1967) in processes involved in the
interactive constitution of shared meanings. They claimed that the social structures
that exist in everyday life consist of normative patterns of interaction and discourse
that, once established, become reliable routines found in interactive situations. In
order to interact and communicate with one another, individuals need to hold
common understandings, which they take as an implicit basis of reference when
speaking to each other. From these theories, the constructs social norms and inter­
action patterns help to delineate the participation structures created in the different
classroom environments and the processes by which mathematical meaning is
developed during social interaction.

The student thinking dimension initially drew on the processes involved in
abstract reflective thought developed by theorists following Piaget (1985). In the
conceptual framework described previously, it was hypothesized that children's
increasing responsibility to engage in higher levels of thinking was connected to
the type of classroom culture (strategy reporting or inquiry/argument). However,
the theoretical constructs underlying this dimension were only broadly conceived
(e.g.• reflection through contrast/comparison) and lacked both a specificity and an
essential connection to mathematics. Therefore, a conceptual framework that could
better describe children's mathematical thinking was needed. We chose to draw from
the work of Williams (2000) to define mathematical thinking and to provide
constructs for analysis.

Mathematical Thinking

In this study, we define mathematical thinking as the mental activity involved in
the abstraction and generalization of mathematical ideas. This definition draws on
the research of Krutetskii (1976) on levels of mathematical activity that are central
to the construction of mathematical knowledge and on the observable epistemic
actions that result in abstraction and generalization, as conceptualized by Dreyfus,
Hershkowitz, and Schwarz (2001).

Williams (2000) created a framework to describe mathematical thinking of
students that initially drew on the work of Krutetskii (1976) and used his empir-
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ical data on "mental activities" to systematically classify cognitive complexity in
order to develop a hierarchy of the cognitive activities students used when solving
mathematical problems. The development of this hierarchy was further supported
through its consistency with Bloom's (1956) hierarchy of learning objectives,
which have since been used to describe cognitive activity (Van Tassel-Baska,
1993). The cognitive activities in the hierarchy, starting with the least demanding,
consist of the following: comprehending, applying, analyzing, synthetic-analyzing,
evaluative-analyzing, synthesizing, and evaluating. These cognitive activities are
assumed to be cumulative, with each activity of the system building on successful
completion of the previous activity.

Williams then integrated these cognitive activities as a nested set of subcategories
with the view of Dreyfus, Hershkowitz, and Schwarz (2001) that the construction
of mathematical knowledge consists of three observable epistemic actions that occur
during the cognitive processes of abstraction and generalization: recognizing,
building-with, and constructing. The identification of epistemic actions during the
process ofabstraction was empirically derived and theoretically justified by Dreyfus,
Hershkowitz, and Schwarz and provides a way to consider mathematical thinking
through "observable" cognitive elements. Williams' hierarchy thus consists of
specific types of mathematical thinking connected to observable epistemic actions.
The cognitive activities for each epistemic action are as follows: Recognizing­
comprehending and applying; Building-with-analyzing, synthetic-analyzing, and
evaluative-analyzing; and Constructing-eonstructing and synthesizing. These
thinking categories have previously been used to study the individual thinking of
students in classroom research in middle and high school mathematics classrooms
(Williams, 2002a, 2002b). The categories of synthetic-analyzing and evaluative­
analyzing have been found useful in providing additional detail about the increasing
complexity of thinking that occurs as students' progress from Building-with to
Constructing.

Williams' (2004) analysis of the thinking of a middle school student, Leon, illus­
trates the subcategories of thinking within this framework. Leon analyzed the figure
formed when he juxtaposed two right-angled triangles and Recognized the prop­
erties he identified (Building-with) as those of a rectangle (Recognizing: compre­
hending). By halving the area of the rectangle, he found the area of the right-triangle
(Building-with: analyzing). He Recognized two aspects ofthis approach in devel­
oping two pathways to explore areas of acute-angled triangles: juxtaposing acute­
angled triangles and using rectangles. He compared these approaches (synthetic­
analysis) and decided the latter was likely to produce an "easier way"
(evaluative-analyzing; synthetic-analyzing for the purpose of judgment). He
synthesized (Constructing) by subsuming the relevant attributes of rectangles
(length, width) into attributes of acute angled triangles (base, perpendicular height)
so he could find areas of triangles without explicit reference to rectangles. He eval­
uated (Constructing) his new insight by Recognizing its usefulness for another
·purpose: equating the areas of triangles with the same base and perpendicular
height.
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These categories in Williams' hierarchy provided a conceptual framework needed
to better depict the nature of students' mathematical thinking for the student
thinking dimension of Wood and Turner-Vorbeck' s conceptual framework. For our
purposes, we expanded Williams' hierarchy developed for studying individual
cognitive activity to consider mathematical thinking in a broader sense, that is, to
investigate the mathematical thinking that children expressed in public situations
(their "group thinking") rather than to examine their individual thinking in a setting
such as an interview. We took this approach because we believed thinking with
others was an important aspect of children's cognitive progress and thus their
knowledge construction; moreover, thinking with others was generally viewed as
a necessary facet in developing virtual dialogue (thinking alone) and thinking as
higher functions (Bruner, 1996; Vygotsky, 1978). It is by and large agreed that
engaging in thinking with others allows "individuals to bypass their own cognitive
limitations" (Rochat, 2001, p. 139) in the reconstruction and mutual consolidation
of thoughts and ideas. Moreover, problem resolution through thinking with others
is the way in which young children develop the capacity for thinking via virtual
dialogue, an important aspect of adult thinking (Rochat, 2001). Thus, these two
conceptual frameworks provide the means for examining the relationship between
the patterns of interaction that exist in the classroom and children's expressed math­
ematical thinking.

METHODOLOGY

Background ofClassroom Data

The reform-oriented primary classes used in the empirical analysis had been in
existence for approximately 5 years. In these classes, children were encouraged to
develop and use mental and invented strategies to solve problems; procedures
such as the standard algorithms for addition and subtraction with regrouping were
not expl~itly taught. The teachers involved in the investigation participated in a 1­
week professional development session followed by visits of the project staff to their
classrooms (see Cobb, Wood, & Yackel, 1990, for more detail). The classes existed
in five elementary schools in the same school district ofa medium-sized Midwestern
city in the United States2 The analysis of the data resource initially identified the
strategy reporting and inquiry/argument classes that distinguished the reform class­
room cultures as discussed previously. For this study, we selected lessons from two
classes previously identified as strategy reporting and two classes previously iden­
tified as inquiry/argument.

One additional class was included in our data resource for comparison with the
reform-oriented classes. This was a textbook-based class in which the teacher did not
participate in the professional development sessions but was from one of the schools
in the same school district. An initial analysis oflessons from this class indicated that

2 The research was sponsored by the National Science Foundation, RED 9254939.
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two "cultures" existed in this class, one that consisted ofconventional textbook lessons
and another that consisted of conventional problem-solving lessons (McNeal, 1991).

Lesson Selection

For each of the five classes described above, 30 lessons conducted during the first
and second semesters were screened. For the refonn-oriented classes, we used
lessons that occurred in the second semester of second grade and for the conven­
tional class the first semester of third grade because the mathematical topics (place
value and addition and subtraction with regrouping) were the common focus of these
lessons. The conventional class consisted oftextbook-only lessons and lessons that
consisted of both problem solving and textbook instruction, with each lesson
divided into a section consisting of nonroutine problem solving and a section of
solving textbook problems. This combination provided the unique opportunity to
examine both textbook and problem- solving cultures within the same classroom.

From each of the four reform-oriented classes, a subset of 8 lessons (for a total of
32 lessons for all four classes) was selected as representative ofthat particular class­
room's culture (strategy reporting, inquiry/argument). From these lessons, 5 lessons
were selected from the subset of 8 lessons for intensive analysis. These 5 lessons
were the base data from which interaction patterns and children's verbalized thinking
were identified. The remaining 3 lessons from each class were used to confrrm the
identification of the patterns of interaction and children's expressed thinking.

For the conventional class, a subset of 8 lessons was selected that consisted of
both problem solving and textbook instruction and 2 lessons that consisted of text­
book instruction only for a total of 10 lessons from the conventional class. Five
lessons were selected from the subset of the 8 combined problem solving and text­
book lessons for analysis. These 5 lessons were the base data from which interac­
tion patterns and children's verbalized thinking were identified. The remaining 3
lessons from the combined problem solving and textbook instruction and 2 text­
book-only lessons were used to confmn the identification of the patterns of inter­
action and children's verbalized thinking.

The lessons focused on the concept of 103 and on methods of two-digit addition
and subtraction, with the exception of the problem-solving lessons in the conven­
tional class. In the conventional class, the concept of 10 was addressed with tradi­
tional textbook place value activities. Using lessons that focus on common content
permitted detailed examination and comparison of interaction patterns and student
expressed thinking across these classes.

Analyses

Our method of analysis was based on a quantitative-qualitative research paradigm
in which two coding schemes, one for analysis of interaction patterns and the other

3 We follow the definition of this understanding given in Cobb and Wheatley (1988).
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for children's mathematical thinking, were used to interpret each of the transcribed
videotaped lessons. This analysis was followed by more intensive microanalytic
interpretative procedures (similar to those described by Voigt, 1990) of the lessons
selected for intensive analysis from each classroom culture.

The procedure for analysis of the interaction patterns consisted of (l) initially
segmenting the transcript by each mathematical problem discussed; (2) conducting
a line~by-line coding of the dialogue for all the segments in the transcript using a
coding scheme described in Wood et a1. (1999), and then (3) identifying and
sectioning the distinct patterns of the interaction that existed within each segment;
and (4) identifying the consistent and repeatable interaction patterns across the
lessons and assigning a label or name to these patterns. The interaction patterns were
given labels that corresponded to the perceived function, intention, or goal of the
interaction. For example, Exploring Methods was a pattern that consisted of
different children presenting the various ways in which they solved the problem (see
the Appendix for detailed descriptions and labels of the specific patterns of inter­
action). In some cases, an identified pattern fit a form of interaction previously
described in the literature; for example, Hoetker and Ahlbrandt's (1969) IRE, or
Initiate Respond Evaluate. It is important to note that all segments of the class discus­
sion were categorized as consisting of some type of interaction pattern or patterns.
Once all the class discussion data were coded and the patterns of interaction labeled,
the types of interaction patterns were counted within each of the four classroom
cultures (conventional textbook, conventional problem solving, report strategies,
and inquiry/argument).

The same transcripts of class discussion for each lesson used to code the inter­
action patterns were used to code and analyze children's thinking, but the coding
was done separately from the coding of the interaction patterns. The coding scheme
described previously for examining students' mathematical thinking was used to
categorize individual children's verbalized statements during class discussion (see
Figure 1). Each line ofchildren's expressed thinking was coded and assigned a single
code formathematical thinking (e.g., comprehension).4 Once all the class discus­
sion data were coded, the categories of mathematical thinking (e.g., Recognizing:
comprehending) were counted within each of the four classroom cultures.

Following this analysis, the coded interaction patterns and the coded children's
statements were combined to recreate each class discussion in its entirety. Each
coded statement of children's mathematical thinking was re-examined within the
interaction pattern it occurred. The number of occurrences ofeach category ofmath­
ematical thinking was recorded for each interaction pattern. For example, a given
instance of the Exploring Methods pattern might consist of four occurrences of math­
ematical thinking coded respectively as one of Recognizing: applying, two of
Building-with: analyzing, and one of Building-with: synthetic-analyzing.

4 Teacher's questions and statements were also analyzed, but these results are not reported in this study.
Information on teacher prompting questions is found in Wood and McNeal (2003).
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Mathematical Examples of Examples of Mathematical Thinking
Thinking Cognitive Activity Revealed in Class Discussion

Recognizing A+ Understand concepts Problem: 72 - 39 ::::
comprehending behind taught idea Tracey: It was 70 minus 30, but first I took the

or known strategy. total, that 70. Then I took 30. And I subtracted
urn, 30 from 70 and I got 40. Then I subtracted
9, [pause] and I got 31. Then I subtracted
[shakes her head no], I added 2. (Apply known
mathematical procedures in a new context.)

Recognizing + Know when to use a Problem: 29 + 10 =; then 29 + 20 ::::
applying known mathematical Jack: We got 49. We got that because the last

idea. was 39 and then you're just adding 10 more.
(Use a lawwn mathematical idea-Jack applies
the mathematical idea of thinking strategies.)

Building-with /I. Apply known mathe- Problem: 50 - 20 =
analyzing matical procedures in Mark: When you add 3 plus 2, you got 5 and

a new context 20 plus 30 is just like 3 plus 2. So if you take
+ Solve using a problem away 2 from 5 you're gonna [going to] have 3

with a slight twist. and ifyou take away 20 from 50 you're gonna
+ Familiarize self with have 30. (Apply known mathematical proc-

problem using specific edures in a new context.)
numerical examples.

+ Systematize the nu-
merical results and
search for patterns.

Building-with + In contrast and com- Problem: 72 - 39 =
synthetic- parison of two methods Sara: Urn, I almost did it like Gregg, except I
analyzing for the difference. did 72 minus 30. And then I urn, then I tookoff

+ Interconnect various 10 and got, uh, 40. (In contrast and compar-
representations, ison oftwo methods for the difference.)
operations, and
assumptions.

*+ Use more than one path-
way to solve a problem.

+ Produce an independent
generalization-"small
discovery."

+ Analyze one case, or
form a guiding principle
to formulate a new rule.

Building-with + Interconnect solution Problem: 72 - 39 =
evaluative- pathways for the pur- Kari: I got 47. So I did it this way [vertically]
analyzing pose of identifying and I got 7 minus 3 is 4 and 9 minus 2 is 7.

flaws and strengthen- Carl: Hold on! The 7? It'sjust that you can't
ing arguments. subtract the 7 from ...

+ Pull together ideas for Matt: [interrupts] Kari. It can't be that way
making a judgment. because if it were, it would be 40 something.

+ Evaluate whether a (Evaluating ifresult is reasonable through a
method or result is fast logical argument.)
reasonable, efficient, Kari: Yes, but this [7] take away this [3] is 4.
or elegant. Seven take away 3 is 4.

Matt: When she went like this [7 - 3] that's
okay. But when she went like this [2 - 9], you
can't do that. That would be nothing or nega-
tive 7. That's less than zero. (Evaluating if
result is reasonable.)
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Mathematical Examples of Examples of Mathematical Thinking
Thinking Cognitive Activity Revealed in Class Discussion

Constructing + Formulate mathemati- Problem: 72 - 39 =
synthesizing cal arguments to explain Linda: [writes problem vertically] Well, if

discovered patterns. you try to take 9 away from 2 you can't do it.
*+ Explore the problem I was going to do this but that would be

from many perspectives changing the problem [writes 39 - 72
rather than just work vertically].
towards a solution. Teacher: Does anyone have an idea for Linda?

*+ Integrate concepts to John: Ah! I have an idea. Listen to this! Any
create new thought or time you have not got enough ones, you can
ideas (new insight). take one 10 and put it with the ones-sort of
Could vary in: break it up differently. (A generalization
+ Number of concepts showing a new insight.)

involved. See-you can't take 9 from 2 but you can take
+ Diversity of the 9 from 12.

domains concepts Teacher: But why 12?
were drawn from. John: You take 10 of the 70 so it is 60 now.

+ Size of the concep- See 12 take away 9 is 3 and 60 take away 30
tualleap. is 30, so it's 33.

+ Spontaneity with which
the process is undertaken.

+ Progressively explore the
problem to continually
develop new insights.

Constructing * + Progressively reflect on Problem: 72 - 39 =
evaluating the situation as a whole Gabriel: Well it is close to 30 because it is

for the purpose of recog- about 40 less than 70-6o-that's 10-50-
nizing inconsistent infor- that's 20--40 30 that's the other 20. Now-72
mation and/or finding a minus 39 is 62-52-42, and take 9 more-
more elegant solution 10 more is 32 so 9 more is 33. Yes that's close
pathway. to 30. Now just one more check-another way

+ Reflect upon the process -33 and 39 would be around 72 because 30
of problem solution for and 30 are 60 and 3 and 9 are 10 and a bit more.
the purpose of recog- We have 60 and 10 and a bit more-so 72 is
nizing its limitations and okay. (Progressively reflect on the situation
its application to other as a whole for the purpose ofrecognizing

«" contexts. inconsistent information -evaluation.)

" Reflect upon the solution John: I have been thinking [(pause]) what am
pathway developed and I going to do with my way ifthere are no tens?
its possible contribution [see synthesis example above].
to generic mathematical Teacher: Tell us more about what you are
processes to employ in thinking John.?
the future. John: What if! had 702 minus 39-no tens to

put with the two?
(Reflect upon the process ofproblem solution
for the purpose ofrecognizing its limitations
and its application to other contexts.)

Note. Colunm I represents categories drawn from Dreyfus, Hershkowitz, and Schwarz (2001). Co1unm
2 represents categories of Krutetskii (1976)*; Williams (2000)+; and Dreyfus, Hershkowitz, and
Schwarz (2001) A. Column 3 provides examples of children's generated and invented methods.

Figure 1. Categories of mathematical thinking and cognitive activity.
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RESULTS

Lesson Structure Across Classroom Cultures

233

We dermed the general organization of the lessons for each classroom culture by
the chronology of major events. In the conventional class. the textbook lessons aver­
aged 60 minutes in length. Lessons in this class generally began with an introduction
in which the teacher gave students infonnation and instructions for how to proceed with
the next segment of the lesson. The next segment varied according to the way in which
the class lesson. individual work, pair work, or individual work and small groups
working with the teacher were combined. The conventional problem-solving lessons
occurred within the usual mathematics lesson and lasted, on average, 16 minutes. These
lessons consisted ofan introduction in which the teacher guided students in class discus­
sion, short segments ofpair work, then class discussion. Removing the problem-solving
segments from the conventional lesson times. the average length of textbook-based
lessons was 45 minutes. The reform-oriented classroom (strategy reporting and
inquiry/argument) lessons lasted, on average, 45 minutes. They consisted primarily of
a brief introduction explaining expectations for students, student pair work (approxi­
mately 20--25 minutes), followed by class discussion (15-20 minutes).

The structure of the conventional problem solving, strategy reporting, and
inquiry/argument classes was highly consistent across the lessons analyzed in compar­
ison with the more variable textbook lessons. This variation in textbook lesson struc­
ture and the shift from textbook to problem-solving instruction within the same lesson
appear to reflect the teacher's attempts to compensate for the lack of variety in the
prescribed textbook lessons and to motivate chilch-en's interest in doing mathematics.

Interaction Patterns

The analysis of the data revealed that not only did the number of interaction
patterns increase progressively across the four classroom cultures, as shown in Table
1. but the types of interaction patterns also changed across the classroom cultures,
with the textbook lessons consisting of the fewest types of interaction patterns and
inquiry/argument lessons having the most types of interaction patterns. The nature
of these interaction patterns also changed from closed to more open, suggesting
increasing opportunities for student discourse and participation.

In the conventional textbook class discussion, the prevalent type of interaction
was the IRE pattern (50%), which consisted of teacher "test" questions, student
response (correct or incorrect), and teacher evaluation of the student's response. This
was followed by Give Expected Information (21 %), a less tightly controlled form
of the IRE pattern in which students still provided previously taught information
in response to teachers' questions, and then by the Funnel pattern (15%) in which
the teacher, through a series of questions. led the student to the correct answer
(Bauersfeld, 1980). The dominance of these three interaction patterns indicated that
children's participation was limited to responding to teachers' questions by giving
known answers or predetermined information.
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Table 1
Frequency Percent ofInteraction Patterns by Class Culturea

Conventional Reform

Interaction Problem Strategy Inquiry/
pattern Textbook solving reportingb argumentC

Common to all instruction
Collect answers 9 2 11 14

Conventional instruction
IRE 50 18 2 1
Funnel 15 2 6
Give expected information 21 16 1
Teacher explain 6 6
Hint to solution 39

Refonn instruction
Exploring methods 14 44 35
Argument 2 9 16
Inquiry 5 9

Teacher elaboration 11 2
Proof by cubes 6 4
Proof by pupil explanation 5 1
Focus 4
Building consensus I 5
Checking for consensus 7
Develop conceptual understanding 3
Pupil self-nominate I

n=34 n=49 n=85 n= 110

a AlIUnes of transcripts were included and counted as an interaction pattern; therefore, all interac­
tions were taken into account. In the case of strategy reporting and inquiry/argument, two identified
patterns specific to each were not included in the results because they only occurred once in the data.
The data were first sectioned by the type of interaction and then the number of segments was counted;
n represents the total number of segments in the data.

b Two patterns not listed.

C Two patterns not listed.

New interaction patterns were observed in the conventional problem-solving class
discussions. In Hint to Solution, the teacher dominated the participation in the pattern
(39%). In this pattern, the teacher "hinted" at the solution method in ways that essen­
tially removed the mathematical challenge or complexity of the problem, which was
then easily solved by the children. This pattern, along with the IRE (18%) and Give
Expected Infonnation (16%) patterns, made up 73% of the types of interaction iden­
tified in the conventional problem-solving portion of the lesson. However, one open
pattern of interaction, Exploring Methods (14%), existed, which allowed for more
student participation. In this interaction pattern, students were expected to tell
others their strategy for solving the problem. These results indicated that in the
conventional problem-solving class there were more opportunities for children to
participate in the discourse than in the textbook discussions.
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In strategy reporting classes, the proportion of interactions involving Exploring
Methods (44%) increased substantially, indicating the importance of children's
participation in providing their strategies during the discussion. There were differ­
ences between the teachers~ one teacher seemed to conceive of the discussion as
consisting of children giving one strategy for each problem, and the other appeared
to view the situation as children giving many strategies for the same problem. This
preference for reporting strategies, as either one or many, was consistent within each
class discussion and across lessons during Exploring Methods interaction patterns.

It can be seen in Table 1 that the range of interaction patterns in the strategy
reporting classroom culture is more extensive than that found in both of the conven­
tional classroom cultures. The interaction patterns that defme conventional classroom
environments (IRE, Funnel, and Give Expected Information) rarely exist in the
strategy reporting classroom culture. This difference reflects an important change
in the participation structure to one in which the students do the reporting and
explaining of their solutions. However, the next most common interaction pattern,
Teacher Elaboration (11%), is one dominated by the teacher and reveals the means
by which teachers elaborate on and extend a child's explanation to ensure that
important ideas are conveyed to the other children. This appears to be a pedagog­
ical routine that the teachers developed as they shifted in their role from teacher as
explainer to student as explainer. Finally, two new patterns comprised 14% of
strategy reporting interaction patterns involved: Argument (9%), in which children
and teacher participate in discourse to resolve their differences or disagreement about
strategies or answers, and Inquiry (5%) in which children and teacher ask questions
for clarification of the strategy or ideas of the child explaining. However, these two
new patterns were attributed to only one of the strategy reporting classes.

In the inquiry/argument classroom culture, the most frequent interaction pattern
observed was also Exploring Methods (35%), just as in the strategy reporting
classroom culture. However, 25% of the interaction patterns involved Argument
(16%) and Inquiry (9%), which was almost twice as many as in the strategy
reporting classes. Furthermore, the proportion of interactions involving Teacher
Elaboration was considerably less (2%). The changes in these three interaction
patterns reflected another major shift in participation from an emphasis on the child
reporting her/his different strategies to the children as listeners taking over the role
of the teacher in questioning, clarifying, and validating mathematical ideas. By defi­
nition, the inquiry/argument classrooms included the two interaction patterns,
Building Consensus and Checking for Consensus (12% combined), that were not
observed in the other three classroom cultures. In the Building Consensus interac­
tion, the children and teacher participated to develop common meanings. Checking
for Consensus initiated by the teacher appeared to be a final attempt to open the
discussion so any child could make comments or ask questions before moving on
in the discussion.

Taken together, these results reveal that a combination of specific interaction
patterns exists within each classroom culture. These specific patterns of interaction
reveal the gradation and particular changes in the roles for participation among chil-
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dren and teachers. In the next section, we present the analysis of the children's
expressed mathematical thinking found within the different classroom cultures.

Kinds ofChildren's Mathematical Thinking Within Classroom Culture

The level of verbalized mathematical thinking varied considerably across the
classroom cultures (see Table 2). First, we note that only five incidents of mathe­
matical thinking were observed in all the conventional textbook lessons that were
analyzed (averaging about 1 incident per 100 minutes of class time). Of these five,
none were observed above the epistemic action ofRecognizing. Thus. the majority
of mathematics expressed by students in the conventional textbook environment
was limited to recognition and recall of infonnation, the least complex of cogni­
tive operations (Bloom, 1956).5

Table 2
Percent ofMathematical Thinking by Class Culture

Conventional Reform

Mathematical Strategy Inquiry/
Thinking Textbook Problem solving reporting argument

Recognizing
Comprehending 40 38 22 13
Applying 60 24 36 24

Building-with
Analyzing 33 27 20
Synthetic-analyzing 0 9 16
Evaluative-analyzing 5 4 24

Constructing
Synthesizing 0 3
Evaluating 2 0

n=5 n=21 n=90 n= 148

Note. Bo}p print represents categories drawn from Dreyfus, Hershkowitz, and Schwarz, 2001. Standard
print represents Williams' (2000) categories adapted from Krutetskii, 1976. n represents the raw
score for number of incidents of children's thinking.

In the conventional problem-solving lessons, 21 incidents of mathematical
thinking were counted (averaging about 19 per 100 minutes). Most of the students'
expressed thinking involved comprehending and applying demonstrating more
than simple memorization. Furthennore, 38% of the incidents of verbalized math­
ematical thinking were at the higher level epistemic action of Building-with:
analyzing, in which children identify parts and the relationship between the parts.

5 The total number of incidents reported represents the occurrence of mathematical thinking and not
the total of aU responses that children made. A low frequency of mathematical thinking reflects a high
frequency of the category recall, defined as rote or recognition, and not considered in this study as math­
ematical thinking.
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These findings indicate that more mathematics was expressed by children in the
conventional problem-solving lessons than in the conventional textbook lessons,
and this mathematics was at a higher level. The change in the type ofproblems that
children solved (from closed to open-ended) could support higher-level thinking
in these lessons and could help explain these differences. We will return to this issue
when we discuss the relationship between interaction patterns and student expressed
mathematical thinking.·

In the reform strategy reporting classes, 92 incidents of expressed mathematical
thinking were counted (averaging about 26 per 100 minutes). Of these incidents of
mathematical thinking, 57% were the epistemic action of Recognizing; 40% were
at the higher level of epistemic action Building-with; and 2% were at the highest
level of epistemic action, Constructing. It is interesting to note that the conventional
problem-solving lessons were quite similar to the strategy reporting classes by this
broad category analysis (62% at Recognizing, 38% at Building-with). Looking more
closely at the specific types of expressed mathematical thinking observed, however,
the incidents of verbalized mathematical thinking in the strategy reporting classes
were higher within each level; in other words, there were more incidents of
Recognizing: applying or Building-with: analyzing. Therefore, children in these
classes were more likely to express thinking involving the application of mathe­
matical ideas to new situations, breaking mathematical tasks into component parts,
and analyzing the relationship between the parts. This difference in thinking
expressed across the three classroom cultures also reflects a shift in emphasis from
mathematics expressed as recall of information to comprehension, application, and
then to cognitive operations that involve analysis.

In the inquiry/argument classes, 148 expressions of mathematical thinking were
counted (averaging about 41 per 100 minutes). Of these mathematical incidents,
36% were involved in the epistemic action of Recognizing, while 61 % were at the
higher level of epistemic action Building-with. This is nearly a complete reversal
ofthe strategy reporting results (57% and 40%, respectively). There were also twice
as many instances of mathematics at the highest level of epistemic action
Constructing (3%) for approximately the same class time. Looking within these
levels, the mathematics expressed in the inquiry/argument classes was substantially
higher than that expressed in the strategy reporting classes. Children's expressed
thought in the inquiry/argument classes consisted principally of Building-with
mathematical ideas focusing most on evaluative-analyzing, indicating that children
during these discussions more frequently expressed thought involving the use of
more than one method or representation to judge the reasonableness of the mathe­
matics they generated (26%) than those in strategy reporting classes (4%).
Furthermore, children's expressed thought consisted almost equally of analyzing
(20%) and synthetic-analyzing (16%) involving cognitive operations of analysis of
relationships between parts and comparing and contrasting different ways of inter­
connecting various representations, operations, or assumptions. Thus, a major
difference between strategy reporting and inquiry/argument classroom cultures was
the emphasis on verbalized mathematical thinking involving synthetic-analyzing
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and evaluative-analyzing, which is the foundation for connecting and validating
mathematical ideas. Taken together, these findings indicate that not only did the
occurrence of expressed mathematical thinking increase across the four classroom
cultures but so did the quality of thought.

The results reported so far suggest that differences exist across the four classroom
cultures in terms of the specific types of interaction patterns that occur, the math­
ematics expressed, and the kinds ofmathematical thinking that children articulated.
The identification and categorization of the specific types of the interaction patterns
found in the classroom cultures can now be interconnected with the analysis of
verbalized children's mathematical thinking, the point of central interest, and
compared across the four classroom cultures. The next step toward our goal ofunder­
standing how certain interaction patterns might support higher-order mathematical
thinking is to examine which kinds of expressed thinking occurred within each inter­
action pattern.

Distribution ofTypes ofMathematical Thinking Within Specific Interaction Patterns

Table 3 provides a comparison of the distribution of the types of mathematical
thinking expressed within the specific categories ofinteraction patterns. We include
raw score and percent data for the number of interaction patterns and the number
of expressions of mathematical thinking counted in each classroom type in order
to assist the reader in making comparisons both within a classroom culture and
across classroom cultures. The data for each type of verbalized mathematical
thinking are reported as raw score data only. This enables the reader to make
hislher own proportional comparisons. For example, one can say that in the strategy
reporting classroom culture, 25 of the 32 observed expressions of mathematical
thinking involving Building-with: analysis occurred within the Exploring Methods
pattern of interaction. Or one can say that 25 of the 54 expressions of verbalized
mathematical thinking observed in Exploring Methods interaction patterns involved
Buildin~-:with: analysis.

As shown in Table 3, in the conventional textbook culture very few incidents of
children' s mathematical thinking were expressed and only at the level of
Recognizing during the IRE pattern. The children expressed no mathematical
thinking in any of the other interaction patterns. This indicates that these interac­
tions are situations in which children's participation consists of responding to
teacher questioning for the purpose of providing known information. In other
words. in the textbook classroom culture, all that is expected of a child is to
remember and recall information.

In the conventional problem-solving classroom culture, the most frequent
pattern of interaction and the one unique to this culture. Hint to Solution. along
with the next most frequently occurring pattern, IRE, both of which are teacher
dominated, provided little opportunity for children to actively participate in
expressing their mathematical thinking. However, over half (12/21. or 57%) of
the incidents of children's expressed thinking occurred during the Exploring
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Methods interaction, in which children participate by giving their strategies,
with a majority of incidents being at higher levels of thinking (applying and
analyzing). Returning to the issue of the influence of open-ended problems, it is
likely that the change to a more open-ended type of problem does contribute to
the expression of mathematical thinking in these lessons, despite the hindrance
of the Hint to Solution interaction (Stein, Grover, & Henningsen, 1996). In addi­
tion, as can be seen in Table 3, the pattern of participation also changes in this
culture to include the interaction pattern, Exploring Methods, which is also the
most frequent pattern found in reform-oriented class cultures. This finding
becomes even more evident when we consider the relationship of participation
and expressed thinking in strategy reporting and inquiry/argument classroom
cultures.

As in the conventional problem-solving classroom culture, in the strategy
reporting classroom culture children offered most of their contributions during the
Exploring Methods interaction (63%). This interaction pattern was dominated by
expressed mathematical thinking of applying (25 incidents) and analyzing (13
incidents). The second most occurring interaction pattern, Teacher Elaboration (9
incidents), yielded almost no student contributions of mathematical thinking.
Finally, the Argument and Inquiry interaction patterns together occurred 14% of
the time. These interaction patterns consisted of situations in which the teacher, as
well as the children who were listening to the explanation, asked questions or made
challenges. In these interaction patterns, children provided responses of more
complex mathematical thinking, Building-with; however, children's expressed
thinking during Argument and Inquiry seldom extended beyond analyzing to the
higher levels of thinking that involve interconnecting ideas (synthetic-analyzing)
or the reasoning ofjustification (evaluative-analyzing).

The data in Table 3 indicate that the Exploring Methods interaction, which
distinguishes children's participation in the strategy reporting classroom culture,
is also the most frequent interaction pattern in inquiry/argument classrooms and
occurs nearly as often as in the strategy reporting; however, 16 of 60 (27%) of the
incidents of mathematical thinking that occurred were at higher levels of thinking
(synthetic-analyzing and evaluative-analyzing). This is compared to 8 of54 (15%)
found in the strategy reporting classrooms. Examining these results further indicates
that in the interaction pattern Argument, a situation involving children participating
in challenge and justification, children express more incidents of thinking involving
evaluative-analyzing, considering whether a method or result is reasonable. Building
Consensus, an interaction pattern unique to this class culture, involves teacher and
children participating to establish shared or common meaning for a mathematical
idea. There are also more incidents of synthetic-analyzing and evaluative-analyzing.
Although Building Consensus occurs less often than Exploring Methods or
Argument, the results suggest that this pattern of interaction is one in which chil­
dren are particularly likely to express higher levels of mathematical thinking. The
data indicate that in this classroom culture, children participate more in interaction
patterns involving the clarification, justification, and validation of their mathematical
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Table 3
Comparison ofChildren's Levels ofExpressed Mathematical Thinking Within Interaction Patterns

Conventional textbook Conventional problem solving

IP MT Mathematical thinking IP MT Mathematical thinking

Interaction pattern RS(%) RS(%) C A AN SA EA SN E RS(%) RS(%) C A AN SA EA SN E

Collect answers 3(9) 0 1(2) 0
IRE 17(50) 5(100) 2 3 9(18) 0
Give expected information 7(21) 0 8(16) 5(24) 4 1
Funnel 5(15) 0 1(3) 0
Teacher explain 2(6) 0 3(6) 0
Hint to solution 19(39) 2(10) 1 1
Exploring methods 7(14) 12(57) 2 5 5
Argument 1(2) 2(10) 1 1
Inquiry
Teacher elaboration
Proof by cubes
Proof by pupil explanation

~Focus
Building consensus ;;.

~

Checking consensus ~
Develop concept l:l...

understanding
;:;.
l:l

Pupil self-nominate -
~Totals 34 5 2 3 0 0 0 0 0 49 21 7 5 6 0 1 0 0 s·
;t;w....
;:::

Otl
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Table 3 (continued) ~

Comparison ofChildren's Levels ofExpressed Mathematical Thinking Within Interaction Patterns ~
Refonn strategy reporting Refonn inquiry/argument

c
~

IP MT Mathematical thinking IP MT Mathematical thinking Q
~

Interaction pattern RS(%) RS(%) C A AN SA EA SN E RS(%) RS(%) C A AN SA EA SN E ~

Collect answers 9(11) 1(1) 1 15(14) 4(3) ~--IRE 2(2) 0 1(1) 0 5°
Give expected infonnation 1(1) 0 ~

~r..,

Funnel 5(6) 0 §
Teacher explain ~

Hint to solution tl;:j
~

Exploring methods 37(44) 54(63) 8 25 13 5 3 38(35) 60(41) 12 16 16 10 6 ~
'<:

Argument 8(9) 15(16) 4 3 5 1 1 1 18(16) 30(20) 3 9 2 4 12
~Inquiry 4(5) 9(10) 1 2 5 1 10(9) 16(11) 2 2 6 2 4

Teacher elaboration 9(11) 1(1) 1 2(2) 0 ~
Proof by cubes 5(6) 0 4(4) 3(2) 1 2 l::l-
Proof by pupil explanation 4(5) 9(10) 5 1 1 1 1 1(1) 1(1) 1
Focus 1(1) 1(1) 1 4(4) 6(4) 2 1 2 1
Building consensus 5(5) 16(11) 2 2 3 3 5 1
Checking consensus 8(7) 6(4) 1 2 3
Develop concept

understanding 3(3) 2(1) 1
Pupil self-nominate 1(1) 4(3) 2 2
Totals 85 92 20 32 24 8 4 0 2 110 148 19 35 29 23 38 4 0

~,....
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understanding and express higher levels ofmathematical thinking than in a strategy
reporting classroom culture.

Micro-interpretive Results

The results presented thus far provide a quantitative overview of the funda­
mental differences in children's patterns of participation and incidents of their
expressed mathematical thinking within different classroom cultures. A micro-inter­
pretive analysis of the transcripts provides detailed information about the specific
patterns of interaction and the consequent levels of verbalized mathematical thinking
that occur in the classroom cultures. We provide examples from the data to illus­
trate the interrelationship between the interaction patterns and the quality of chil­
dren's expressed mathematical thinking that characterizes the differences among
the classroom cultures of conventional problem solving, strategy reporting, and
inquiry/argument. These examples are presented in Figure 2. It is clear from the
quantitative results that although some of the same interaction patterns (e.g.,
Exploring Methods) are found across all three of the classroom cultures, the quality
of expressed thinking differs within those patterns. The micro-interpretive analysis
of these patterns and the thinking that children verbalize provides further insight
into these differences. Each example contains a complete episode wherein a problem
is given, children spend time solving the problem, and a complete discussion takes
place of the problem; the episode ends when the discussion of the problem is
finished.

In the example from the conventional problem-solving classroom culture (see
Figure 2), the discussion begins with the teacher reading the problem (line 81)
followed by an IRE pattern (lines 81-85), the most frequent interaction pattern found
in conventional textbook instruction. The hallmark interaction pattern of this class­
room culture (Hint to the Solution) follows (lines 87-89). The teacher begins to elim­
inate the mathematical challenge of the problem by asking, "Did they give them­
selves.,-a card?" to which the children need only respond, "No." Next, the teacher
asks a rhetorical question that she answers to complete the elimination of the intel­
lectually challenging aspect of the problem: "No. That means Susie gave a card to
who? Myra, Sylvia, and Felicia.". It is clear that this pattern diminishes the effec­
tiveness of using an open-ended problem; nevertheless, an Exploring Methods inter­
action pattern follows (lines 98-103) in which Becky and Karl give explanations
expressing thinking at the level of Recognizing: applying.

Considering the segments in total, the episode characterizes the way in which
the conventional problem-solving discussion contains both conventional and
reform types of interaction. It also shows how the Hint to Solution pattern illus­
trates the tension between conventional and reform types of interaction. As in
conventional textbook classes, the teacher wants to ensure that students know how
to solve the problem in order to get the correct answer. To the same degree as in
reform-oriented classes, the teacher also desires to open the discussion to students'
solutions and to engage them in problem solving. But in her efforts to make the
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Inquiry
39. Teacher: Why do you do
that? Why do you add 4 onto
20?
40. Mark: Well I thought it
would be easier.
Building-with (incomplete
expression ofevaluative-ana­
lyzing; reason required but
not given).
41. Teacher: [to the class].

Lesson 8 Lesson 4 Lesson 4
81. Teacher: [reads the probl- 1. Teacher: [writes the sen- [Solving Time]
em] Sylvia, Myra, Susie, and tence] The number sentence 1. Teacher: [reads problem].
Felicia exchanged Valentine's is 72 minus 39. Would you Okay, it says-this many
Day cards. How many cards like to think for a minute and cherry candies [84] are in the
were exchanged? tell me what you think would candy shop, you can sell 68

be a good way to solve that and we want to know how
IRE problem? That number sen- many are left? [Draws a pie-
81. Teacher: Now let's see tence. Now remember, I'm tureof8 rolls and 4 single can-
if we understand the question. asking you for a way of work- dies on overhead and writes
How many girls are we talk- ing the problem, aren't I? 68.] Johnny, do you want to
ing about? [Solving Time] start?
82. Class: 4.
Recall Explore Methods Explore Methods
83. Teacher: 4. Okay. Now. 2. Gregg: I take-urn minus 31. Teacher: I think that's
What did they exchange? urn 3 from 7 and that would what we've got so far with
84. Class: Valentine's Day make it 40. the green number sentence.
cards. But then you don't have [80 - 60 == 20]. Isn't that kind
Recall enough to minus a 9 from 2 of what you just said? Can
85. Teacher: Valentine's cards. so you have to go over and that help us do the other one?
What does exchange mean? get a 10. 33. Teacher: How can it

So then you've got 3 left so help us Mark?
Hint to the Solution that makes it 30. 34. Mark: You could like
87. Teacher: Trade. Okay. All And then you have 12 left and have 80 minus 60 equals 20,
right. Did they give them- then you minus 2 and then then you could have, say you
selves a card? you got 7 from minus that. added 4, then take away 8, it
88. Class: No. And then you, you just, you would be 16.
89. Teacher: No. That means already know that if you Explanation
Susie gave a card to who? minus 7 from 10 you've got 3, 35. Teacher: I'm sorry.
Myra, Sylvia, and Felicia. so it equals 33. Will you say that one more
How many cards were ex- Building with (synthetic ana- time please?
changed altogether? lyzing) [two processes con- 36. Mark: 80 minus 60 would
Okay get with a partner [to sidered simultaneously to equal 20, then you take 20
solve the problem]. arrive at a solution. Recog- minus 4 would be 16.
[Solving Time] nizing each idea contributed Building-with (synthetic ana-

nested within synthetic lyzing) [two processes consid-
Explore Methods analyzing). ered simultaneously to arrive
98. Teacher: All right, every- at a solution; nested Recog-
body back to your seats. 22. Kent: I just took 72 minus nizing oftheir relevance].
Wow. That was fantastic. 30 is 42, then I took off 2 37. Teacher: So you're saying
How did you come up with, from the 9 and it's urn, 40 and add 4 on to what?
and most everybody did, that then I took off the other 7 38. Mark: Add 4 on to 20
12 cards were exchanged? and that's 33. would be 24, then take away 8.
Let's talk about the ways. Building with (application)
Becky? [applied a known procedure].
99. Becky: Urn, there were
4 girls, and they didn't give 43. Sara: Urn, I almost did it
one to themselves, so there like Gregg except I did 72
was 3 people they would minus 30. And then I urn,
give them to. then I took off 10 and then I
Recognizing (comprehending) got uh, 40.
100. Teacher: Db huh. Building with (incomplete
101. Becky: And urn, 4 people expression ofsynthetic ana­
got 3 cards, that's 3 and 3 for lyzing) {synthetic analyzing:
two people is 6, and 3 and 3 comparison oftwo methods.
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Conventional Reform Strategy Reform Inquiry!
Problem Solving Reporting Argument

for two more people is 12. Recognizing required identi- What do you think about
Recognizing (applying) fication offeatures ofsimilar- that idea?
102. Teacher: Very good. So ity and difference (not given)]. Does adding 4 onto 20 make
you added up 3 four times, And then, no, I took off 10 sense?
right, Becky? [she nods]. and I got 30. Wait. 42. Brian: I don't get it.
Anybody else do it a different 44. Teacher: You took 72 Prompt Recognizing
way? Karl? minus 30. Then you got 42, (comprehending)
103. Karl: Well, I did it the then you took off 10. Why 43. Teacher: Why did you add
same way, but I did like three did you take off 10? 4-on to 20?
times, so like one would, Do you remember why You said it's easier. Can you
one person would have to, you took off 1O? tell us more?
one people, one person 45. Sara: Yeah, because 44. Mark: 'Cause if you just
would have to give 3, and it was easier. did that [points to the 8] it
then another person would It was close to 9. would be about 12.
have to give 3, and 3 times Building with (evaluative ana- Building-with (evaluative-
4 is 12. lyzing). [Synthetic analyzing analyzing) considering an-
Recognizing (applying) for the purpose ofjudg- other way to check the -
104. Teacher: Very good. ment nested within reasonableness ofsome
Okay. Anybody else have evaluative analyzing]. mathematics.
a different way they got it? 46. Teacher: Yeah. 45. Teacher: You've already
[no hands] Okay. Because 9's close to 10. subtracted the tens haven't

Okay. So when you take you? To get 20?
off 10 what do you get? 46. Mark: Yeah, I used it to
47. Sara: 52, no I mean 32. get these [points to 4 in 84
48. Teacher: 32. And then? and 8 in 68].
49. Sara: Then I added 1. 47. Teacher: Does that make
50. Teacher: You added 1 be- sense now? [to class]
cause you were only taking So you're saying we would
off 9 instead of 10. [(Teacher have 24 minus 8?
writes on the overhead: 48. Mark: Yeah.
(72 ~ 30 =42. 42 ~ 10 =
32. 32 + 1 =33).] Checking for Consensus;
Okay. Did anybody think, in Building Consensus
case you didn't have a strategy 51. Teacher: Does anyone
before, while you heard these have a question for Mark?
other people telling about their 52. Claire: Why didn't you
strategies did you think of one subtract 4 instead of add 4?
as we were going along? Is Building-with (analyzing)
there another way we can do 53. Mark: Ifyou--
this problem? No more dif- Ijust wanted to take away 8
ferent ways? because it'd be a lot easier ...
53. Tracey: I was doing it sort Building-with (incomplete
of like Gregg, but not exactly. expression ofevaluative­
Building with (incomplete ex- analyzing, reasoning required
pression ofsynthetic ana- but not given).
lyzing) [as for Sara, 43 above, 54. Teacher: Mark, can you
synthetic analyzing: compar- show us in the picture, taking
ison oftwo methods; nested away 60? Can you mark them
Recognizing requiredfea- out or something so we can
turels ofsimilarity and dif- see it?
ferent to be identified]. [promptfor expression of
54. Teacher: Gregg's is right evaluative analysis]
here. [(points to number sen- In the picture, up at the top
tence written on overhead)]. where the rolls of candy are.
You were taking 70 minus 30. [The picture shows 8 rolls of
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Conventional
Problem Solving

Reform Strategy. Reform Inquiryl
Reporting Argument

55. Tracey: Well just, see I candy and 4 single candies.]
took. Yeah it was 70 minus 55. Mark: 10, 20, 30,40, 50,
30, but fIrst I took the total, 60 [crosses out each of the 6
that 70. rolls]. So you had 10, 20, you
Then I took 30. could add 4 more on to get 24.
And I subtracted urn, 30 56.: Teacher: Okay. Why are
from 70 and I got 40. we going to add 4 more on?
Then I subtracted 9; (pause) [short pause]
and I got 31. Does the picture help you see
Then, and then I subtracted that? [short pause]
[shakes her head no]. I What do you have left
added 2. there besides 20?
Recognizing, comprehending 57. Mark: 4. So minus 8,
[Teacher writes on the over- it should be 16.
head as the student talks: Building with (synthetic ana-
(70 = 30 = 40. 40 - 9 = 31. lyzing) [more than one proc-
31 + 2).] ess considered simultaneously
56. Teacher: Tracey's got a to arrive at a solution;
small voice. Recognizing each idea con-
And I heard what she said, but tributed nested within syn-
you might not have under- thetic analyzing].
stood. She took-she took 60. Teacher: [to the class]
the 2 off of 72 and off the 39. So he says it should be 24
[Teacher is pointing at nUffi- minus 8.
ber on the overhead.] And so 61. Class: Agree.
she took 70 minus 30 and got
40. Then she subtracted the 9
out of the 39 and got 31. Then
she went back and added. the
2 that was in 72, and got 33,
for her answer. [Writes on
the overhead 33.] Okay.

Figure 2. Classroom examples of interaction patterns and children' s expressed thinking.

problem "understandable," she inadvertently creates a situation in which the
students no longer need to engage in thinking of Building-with: analysis in order
to solve the problem. Thus; when children express their thinking in the Exploring
Methods pattern, all that is required of them to solve the problem is to apply learned
information.

Turning now to discussions in reform-oriented classroom cultures, we present
examples to illustrate important differences. The reader will recall that the standard
algorithms for addition and subtraction were not taught in these classrooms; instead,
children were encouraged to invent strategies to solve problems. In Figure 2, the
example highlights the reform strategy reporting classroom culture. Similar to the
previous example; the teacher reads the problem that students are to solve mentally
without paper and pencil (line 1), which is the number sentence 72 - 39 = _.
Solving time is given, and the discussion follows. The whole of the episode consists
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of an Exploring Methods pattern that begins with Gregg (line 2), followed by two
other children, and then Kent (line 22). Kent solves the problem as 72 minus 30 is
42. He cancels out the 2 in 42 to get 40 and a 2 in 9 to get 7. Then he subtracts 7
from 40 to get 33.

Continuing (lines 43-55), Sara states that her way is similar to Kent's because
she did 72 minus 30, but different because she then took off 10 instead of working
with the 9 as Kent did. Reporting her strategy thus far, Sara is expressing thinking
that initially involved comparison of two methods for the difference, Building­
with: synthetic-analyzing, and Recognizing some feature of similarity between
Kent's method and her own (line 43). As she continues explaining, she becomes
confused about her strategy. Here the teacher steps in to support (line 44) by
summarizing and asking the question, "Why did you take off 10?" This requires
Sara to give a reason (line 45): "Yeah, because it was easier" (evaluative-analysis).
"It was close to 9" (synthetic-analysis). She then takes 10 from 42 to get 32, adds
the 1 (from the initial move to make ten), and gets 33. To use this solution strategy
requires a sense of number relationships, the recognition that "making 10" makes
mental computation easier (Recognizing), but then flexibility in thinking to realize
that the number 1 needs to be added to the sum to make 33 (synthetic-analyzing,
considering the ease ofworking in lOs in conjunction with remembering to increase
by 1 because there were only 9).

Unlike in the conventional problem-solving lesson, the teacher does not provide
hints for how to solve the problem; instead, the teacher supports students as they
explain by asking questions that require further explanation, clarification, and
reasoning. Moreover, the Exploring Methods pattern of interaction, as the most
frequent pattern in a reform strategy reporting classroom culture, requires a different
level of participation. In this interaction pattern, children's participation requires
reporting a different way of solving the problem and acknowledging in what way
their solution is the same but different (synthetic-analyzing) from a strategy previ­
ously given. Confusion is allowed and support is given by the teacher to help resolve
the situation. When participating in explaining a strategy, the child knows that further
questions might be asked but usually only from the teacher. These teacher ques­
tions ask for further clarification and reasoning, which require more complex
cognitive operations such as synthetic-analyzing in response. However, as illustrated
in this episode, participation in this classroom culture is typically limited to a
dyadic exchange between the child explaining and the teacher.

The way of participating and the thinking expressed during these Exploring
Methods patterns are more demanding than in the conventional problem-solving
classroom culture, with the teacher assuming a supportive role of summarizing and
elaborating on the child's explanation (lines 46,50,56) to provide or fill in impor­
tant information and connections that the child explaining did not provide. It
appears that the teacher's purpose in providing additional information and rela­
tionships is to ensure that those children listening understand the strategy given.
This inadvertently creates a situation in which those listening need pay attention
but only for the purpose of determining whether their solution method is the same
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and/or different in order to volunteer to report. Thus, when children express their
thinking in this classroom culture, it seldom consists of evaluative analysis as is
found in the inquiry/argument classroom culture shown in the next episode (see
Figure 2).

In the beginning of the inquiry/argument example (lines 31-38) the interaction
pattern of Exploring Methods is similar to that found in strategy reporting discus­
sions; Mark presents his solution strategy to the problem 84 - 68 as "80 minus 60
equals 20," add 4, and "then take away 8, it would be 16" (line 34). However, when
asked by the teacher, "Will you say that one more time please?" Mark provides a
different strategy, "20 minus 4 would be 16," similar to the canceling strategy of
Kent in the previous episode. In the next exchange (lines 37, 38), Mark returns to
his original strategy of adding 4 to 20 and subtracting 8. At this point, the episode
shifts to an inquiry pattern of interaction (lines 39-48). During this exchange,
Mark is asked to give a reason for adding 4 to 20, to which he responds with "it
would be easier" but does not provide a reason why it is easier. The teacher, rather
than providing further questioning, turns the discussion over to the listeners (line
41), at which point Brian says he does not understand (line 42).

Following Mark's explanation; the teacher again turns the discussion to the
listeners (line 51), and the interaction shifts to Checking for Consensus and Building
Consensus. Given Mark's different strategy solutions, Claire asks a crucial ques­
tion: "Why didn't you subtract 4 instead of add 4?" The nature of Claire's ques­
tion requires Mark to respond with a reason, but his response involves only a
partial explanation of his reasoning (lines 52, 53). The teacher, realizing that his
explanation does not answer Claire's question, asks Mark to relate his method to
the original drawing of rolls and candies on the overhead projector in order to show
why he added 4. This is an attempt to interconnect strategies, by asking Mark to
show and perhaps discuss how his method and the strategy of drawing single
candies and rolls of candies (a strategy known and used in this class) are the same
(lines 54-57) (synthetic-analyzing, showing connections between two representa­
tions when describing a solution) and the class agrees (lines 60-61). Because Mark
still does not give a reason for his two strategies or why one strategy is easier, and
the class only responds with "agree," we can only say that the interaction is an
attempt at building consensus and that the interactive constitution of shared meaning
likely is incomplete.

This episode illustrates the major differences between the two reform-oriented
classroom cultures strategy reporting and inquiry/argument. This is illustrated by
interaction patterns that provide listeners with opportunities to participate by asking
questions of the child giving an explanation. Moreover, the thinking that children
expressed consists of incidents ofBuilding-with: evaluative analysis, making judg­
ments about the reasonableness of a method or result after simultaneously consid­
ering the problem through two different representations.
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Summary

Mathematical Thinking

The data reported here show the differences between conventional and reforrn­
oriented classrooms in the quality ofmathematical thinking expressed and the nature
of the interaction patterns that occur during class discussion. Results of the analysis
showed that children in the conventional textbook classroom culture were most often
engaged in recalling previously taught information. It is generally accepted that
recall or recognition only requires remembering the information and does not
qualify as a form of higher-order thinking (Resnick, 1987). The results of the data
from the conventional problem-solving classroom culture provided insights into the
tension between conventional and reform types of interaction. As we discussed
previously, although the goal was to create an open discussion of students' solu­
tions and to engage them in problem solving, the teacher's efforts to make the
problem "understandable" unintentionally created a situation in which the mathe­
matical challenge of the problem was removed, eliminating the need for students
to engage in higher-level thinking.

The most important results of the study were the findings that revealed the nature
of the important differences that existed between reform-oriented classroom
cultures. As we reported, in the strategy reporting classroom culture the established
pattern of interaction is dyadic between the child explaining and the teacher. This
provided a situation in which the individual explaining expressed quality thinking
but did not foster the development of collaboration that is central to inquiry instruc­
tion (Palincsar & Herrenkohl, 2002). Only in the inquiry/argument classroom
culture were there opportunities for all children to be involved in meaning making
and to develop a common ground on which to build shared understanding
(Rommetveit, 1974). In the inquiry/argument classroom culture, children's thinking
was extended to include whether a method or result is reasonable (evaluative­
analysis), the pulling together of ideas for making a judgment (synthetic-analysis),
and identifying flaws (evaluative-analysis) and strengthening arguments by consid­
ering tlfe mathematics from a different perspective (synthetic-analysis, evaluative­
analysis)-all as a process for establishing shared mathematical meaning.

DISCUSSION AND CONCLUSION

In this article, we undertook to examine the interrelationship between types of
interaction patterns and the nature of children's mathematical thinking expressed
within these patterns. Our fundamental argument---that social interaction patterns
established in the classroom specifically affect how children construct mathemat­
ical knowledge in that classroom--is supported by· our data. Those interaction
patterns that required greater involvement from the participants were related to
higher levels of expressed mathematical thinking by children. However, this study
has limitations. One limitation is that the results are based on an empirical analysis
of a small sample of reform classes selected from one specific approach to reform.
Although we attempted to account for this limitation by corroborating the analysis



Terry Wood, Gaye Williams, andBetsy McNeal 249

with additional data from both conventional and other reform classes, there is still
the possibility that the results are biased and represent only processes found in the
classes used in the study. Another limitation is that these results only provide
insight into children's mathematical thinking as it is expressed during class discus­
sion and examines neither the reasoning of individual children nor the development
of their mathematical thought in the various classroom cultures.

Our primary interest in mathematics classrooms centers on a concern for the intel­
lectual development of children's mathematical thought. In this article, we offer a
conceptual framework that consists of interaction and thinking dimensions and
analysis of classroom data in an attempt to explain children's development of
mathematical thinking and reasoning that capitalizes on the importance of humans
learning through each other. Although we provided evidence of the relationship
between interaction patterns and children's verbalization of mathematical thinking,
we have not provided an explanation for how or why these are related. For this, we
return to the work of Bruner, along with Tomasello and Hobson, on the role of social
cognition in the development of thought in general and mathematics specifically.
Bruner (1996) argued that there is always idiosyncratic thought in humans, but
meaning making in culture is the building ofcommon ground found in interpersonal
interaction. He emphasized that children must have certain "social cognitive skills"
in order to enter into joint attentional interactions with adults and to understand adult
communicative intentions that are central in learning through others. The ground­
work for meaning making and building of common ground occurs in early child
and caretaker interactions, through very highly structured fonnats and with sensi­
tive adults as support. As children become more skillful at maintaining joint atten­
tion and determining adult communicative intentions in a wider variety of interac­
tive situations, highly structured formats become less crucial to the process
(Tomasello, 2001).

By applying these ideas to the development of children's mathematical thinking
in classrooms, the interaction patterns in which children express their mathemat­
ical thinking can be viewed as less structured "formats," which, once established,
become reliable repeatable routines that constitute the social structure of the class.
The meaning making found in interpersonal interaction relies on these interaction
patterns because they facilitate children's social cognitive capacity to determine the
intentions of the others, including the teacher (Tomasello, 2001). Therefore, it is
not interaction patterns per se that affect the development ofmathematical thought
but the fact that these patterns represent specific types of interpersonal interactions
through which meaning making and experiences are shared (Hobson, 2004).
Therefore, the requirements of interpersonal interaction (the tum taking and ques­
tioning) affect how children think. It is important, then, to examine children's
expressed mathematical thinking within the context of these interaction patterns to
better understand the development ofmathematical thought. Expressed theoretically,
social processes, social norms, including discipline-specific norms, and interaction
patterns, help to delineate the interpersonal interaction or participation structures
created in different classroom environments; the cognitive processes, epistemic



250 Mathematical Thinking

actions, and types of mathematical thinking involved in the mental activity of
abstraction and generalization account for the construction ofmathematical knowl­
edge. However, it is the social cognitive processes of joint attention and under­
standing of others' communicative intentionality that is the medium by which
mathematical thought develops through meaning making with others. Although all
three processes are essential to the development of mathematical thought, it is the
uniqueness of human beings' capacity for social cognition (Tomasello, 1999) that
enables the connection between social interaction and cognition.
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